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Abstract

We study combinatorial auctions in online environments with the goal of maximizing social welfare.
In this problem, new items become available on each day and must be sold before their respective expira-
tion dates. We design online auctions for the widely studied classes of submodular and XOS valuations,
and show the following results:

- For submodular valuations, we give an O(logm)-competitive mechanism for adversarial valua-
tions and an O(1)-competitive mechanism for Bayesian valuations, where m is the total number
of items. Both these mechanisms are efficient and universally truthful for myopic agents, i.e.,
agents with no knowledge of the future.

- For XOS valuations, we show that there is no online mechanism that can achieve a competitive
ratio of o

(
(m/ logm)1/3

)
even in a Bayesian setting. Our lower bound holds even if we do not

require truthfulness and/or computational efficiency of the mechanism.

This establishes a sharp separation between XOS valuations and its subclass of submodular valuations for
online combinatorial auctions. In contrast, no such separation exists for offline auctions, where the best
bounds for both submodular and XOS valuations are O((log logm)3) for adversarial settings (Assadi
and Singla, FOCS 2019) and O(1) for Bayesian settings (Dütting et al., FOCS 2017).

In contrast to the above, if items do not expire and only need to be sold before the market closes, then we
give a reduction from offline to online mechanisms that preserves the competitive ratio for all subadditive
valuations (that includes XOS and submodular valuations), thereby achieving the same bounds as the
respective best offline mechanisms.
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1 Introduction

Inspired by the popularity of selling online advertising opportunities via repeated auctions, there has been a
growing body of literature on dynamic mechanism design for additive valuations in the past decade (e.g., [1,
25, 27]). Dynamic mechanisms create the possibility of boosting revenue and/or welfare by evolving the
auctions across time. In spite of the success of dynamic mechanisms for additive buyers, little is known
for dynamic mechanism design with buyers whose valuations are combinatorial. This is frequently the case
for buyers participating in marketplaces such as Amazon and eBay, where large volumes of heterogeneous
items are sold. In many cases, these items may be perishable, or have to be sold within a stipulated time
frame before they lose value, and therefore, cannot be sold via offline auctions. In light of these, we initiate
the study of combinatorial auctions in online environments in this paper. In this problem, items arrive every
day and have expiry dates before which they need to be sold. The goal is to design an auction that maximizes
social welfare, where the auction dynamically evolves over time but does not have knowledge of the future.

Combinatorial auctions (see, e.g., [6]) are a central object of study in the field of algorithmic game
theory. In a combinatorial auction, we are given a set U of m items and a set of n buyers with respective
valuation functions (v1, · · · , vn) defined on all subsets of items. The goal is to design an auction that
allocates the items to the buyers S = (S1, . . . , Sn) (i.e., buyer i receives the subset of items Si where
Si∩Sj = ∅) such that the social welfare, defined as

∑
i vi(Si), is maximized. In a seminal work, Dobzinski

et al. [14] provided the first truthful1 and efficient mechanism that approximates the social welfare to a
factor of O(

√
m) for general monotone combinatorial valuations and O(log2m) when restricted to XOS

valuations. Since then, welfare-optimal combinatorial auctions have been extensively studied and the current
best approximations areO(logm log logm) for subadditive valuations [9] andO

(
(log logm)3

)
[2] for XOS

valuations. This line of work establishes a relatively clear picture of combinatorial auctions in static settings.
In the online environment, we assume (wlog2) that there is a fixed set of buyers throughout the entire

time horizon. The items arrive online in batches over time (e.g., a new batch of items arrives every day).
Neither the platform (or sellers) nor the buyers have knowledge of items that will appear in the future. Each
item has an expiration date before which the item must to sold. Moreover, once an item is sold to a buyer, the
seller cannot retrieve the item and reallocate it later. The central question that we address in this paper is: can
we design welfare-optimal combinatorial auctions that are truthful and efficient in an online environment?

1.1 Our Results

In this paper, we focus on complement-free buyers, i.e., buyers with subadditive valuations, its widely
studied subclass of XOS valuations, and a further well-studied subclass of submodular valuations. We
assume that in addition to value queries, where a buyer is asked to report her value for a particular set
of items, the seller is allowed to use demand queries to ask for a buyer’s favorite bundle given specific
item prices. We consider both the prior-free and Bayesian settings. In both settings, the buyers’ valuations
for future goods are chosen by an adversary in an adaptive manner. In the Bayesian setting, the seller
additionally has access to the distributions of the buyers’ valuations over the existing goods.

Online Allocation for XOS Buyers. We begin with online allocations for complement-free buyers even
without requiring truthfulness and/or efficiency. For XOS buyers (and by generalization also for subadditive
buyers), we show a lower bound of Ω

(
(m/ logm)1/3

)
on the competitive ratio3 of randomized algorithms

even in the Bayesian setting (Section 3). (Recall that m denotes the total number of items.) This polyno-
mial lower bound sharply contrasts with upper bounds of 2 [15] and O((log logm)3) [2] known for offline

1We use truthful and incentive compatible interchangeably to mean that a buyer cannot profit by misreporting their valuation.
2This is without loss of generality: for a buyer who may join and leave the market multiple times, her marginal valuation can be

set to be 0 for stages when she is absent from the market.
3The competitive ratio of an online allocation is the worst case ratio of its (expected) welfare and that of the optimal allocation.
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combinatorial auctions with XOS valuations in the Bayesian and prior-free settings respectively.

Online Mechanism for Submodular Buyers. Given the lower bound above, we restrict our attention to
a widely studied subclass of XOS valuations, namely submodular valuations. It is well-known that an
algorithm that allocates each item immediately when it becomes available to the buyer with the highest
marginal valuation is 2-competitive for submodular valuations [21, 23]. Hence, the above lower bound does
not hold for submodular valuations. But, what can we achieve in terms of welfare-optimal mechanisms for
submodular buyers, i.e., where we also desire the allocation to be incentive compatible and efficient? Since
neither the seller nor the buyers have any prior knowledge about the future, we model the buyers’ strategic
behavior by assuming that they maximize their utility for the current stage because they do not know about
future opportunities. (We call this myopic behavior.) Even assuming myopic behavior, the design of a
truthful, competitive mechanism for submodular buyers turns out to be challenging. For instance, the greedy
algorithm has a competitive ratio of 2, but is not incentive compatible. On the other hand, selling each batch
in separate second-price auctions is truthful, but is not competitive in terms of social welfare.

Our main contributions are to design online mechanisms that achieve competitive ratios of O(logm) in
the prior-free setting and 8 in the Bayesian setting (Section 4 and Section 5). Note that these are (at least)
exponentially better than the lower bound for XOS buyers, thereby establishing a clear separation between
these two classes. This is in sharp contrast to offline combinatorial auctions, where the best bounds for
submodular valuations are identical to those for XOS valuations. Interestingly, our mechanisms sell every
item as soon as they become available and do not depend on the expiry dates. Moreover, they are universally
truthful for myopic buyers, and are efficient.

No Expiration. We also consider a setting where the items do not expire, but must be sold before the market
closes (the closing date being unknown in advance to the platform and the sellers). Our negative results for
XOS valuations rely on the fact that all the items must be sold immediately on becoming available, and
therefore, do not apply in this case. Indeed, we give a reduction to convert offline mechanisms to this
setting while preserving the competitive ratio. As a result, the best bounds for subadditive [9, 16] and
XOS/submodular [2, 15] buyers for both the prior-free and Bayesian offline settings generalize to the online
case when there are no expiry dates (Section 6).

Our results are summarized in Table 1. (We have also provided existing offline results for comparison.)

Online No Expiration Offline

Prior-free
Subadditive Ω

(
(m/ logm)1/3

)
O(logm log logm) O(logm log logm) [9]

XOS Ω
(
(m/ logm)1/3

)
O
(
(log logm)3

)
O
(
(log logm)3

)
[2]

Submodular O(logm) O
(
(log logm)3

)
O
(
(log logm)3

)
[2]

Bayesian
Subadditive Ω

(
(m/ logm)1/3

)
O(log logm) O(log logm) [16]

XOS Ω
(
(m/ logm)1/3

)
≤ 8 2 [15]

Submodular ≤ 8 ≤ 8 2 [15]

Table 1: Summary of our results. We include the results of offline versions for reference.

1.2 Technical Overview

We demonstrate a sharp separation between XOS and submodular valuations in terms of the approximation
ratio. XOS and submodular valuations are often considered to be at the same level of complexity in truthful
welfare-maximizing combinatorial auction design, since most techniques developed for submodular valua-
tions can be directly generalized to XOS valuations (e.g., [2, 11, 14]). This is mostly due to the fact that prior
work relies heavily on a (by now, standard) revenue-utility decomposition argument (see, e.g., [15, 17, 20]).
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However, in online environments, this argument fails in a fundamental way that is demonstrated and ex-
ploited by our lower bound for XOS valuations.

Instead, our online mechanisms for submodular valuations rely on a carefully designed online pricing
scheme that is truthful for myopic buyers. Our analysis relates the welfare accumulated online to the of-
fline optimum via a proxy benchmark that is a constant approximation of the offline optimum. This proxy
benchmark is useful because we ensure that, unlike the actual offline optimum, this benchmark evolves in a
relatively “stable” manner over time as new items are added. Also key to our analysis is an associated novel
revenue-utility decomposition argument that is tailored to submodular (as opposed to XOS) valuations (see
Lemma 4.9 for the prior-free setting and Lemma 5.4 for the Bayesian setting), and might be useful in arguing
about submodular valuations in other problem settings.

The mechanisms above are truthful only for myopic buyers, i.e., who cannot foresee the future. While
this is a reasonable (and perhaps the most natural) assumption in an online setting, let us briefly also consider
the case of omniscient buyers, i.e., who can plan with knowledge of the future. Interestingly, designing a
truthful mechanism in this case even without welfare or efficiency guarantees seems non-trivial. In fact, note
that running separate second-price auctions for each batch of items is not truthful for omniscient submodular
buyers. (This is in contrast to additive buyers, for whom this auction is indeed truthful even if they are
omniscient.) We leave the case of omniscient buyers as an interesting direction for future work.

2 Preliminaries

We consider a setting with n buyers and one seller. The goods arrive in batches in T stages where T is
unknown to the seller. We let the set of newly arrived goods at stage t be Bt. The entire set of goods is
U =

⋃T
t=1B

t. For convenience, we will use the notation U (t,t′) =
⋃t′

τ=tB
τ to represent the items arriving

between stage t and stage t′. Let mt = |U (1,t)| be the total number of items in the first t stages. As usual,
we use −i to indicate the buyers other than buyer i.

The buyers’ valuations are combinatorial and we assume the valuations are normalized, i.e., vi(∅) = 0
for all buyers i, and monotone, i.e., vi(S) ≥ vi(S

′) for all S ⊇ S′. For convenience, we give each item an
index j in a chronological order of its arrival. More precisely, the items inBt are indexed between (mt−1+1)
and mt. Moreover, for item j, we will write vi(j) = vi({j}) for short. Each item j has an expiration date
e(j) and for an item j without expiration date, e(j) =∞. We focus on subadditive valuations in this paper.

Definition 2.1 (Subadditive Valuation). A valuation v is subadditive if for every bundle S and S′ such that
S ∩ S′ = ∅, we have v(S) + v(S′) ≥ v(S ∪ S′).

Definition 2.2 (Additive, XOS, and Submodular Valuation). A valuation v is additive if for every bundle
S ⊆ U , we have v(S) =

∑
j∈S v({j}). A valuation v is XOS if there exist additive valuations a1, · · · , aq

such that for every bundle S ⊆ U , we have v(S) = maxr ar(S). A valuation v is submodular if for every
bundle S and S′, we have v(S) + v(S′) ≥ v(S ∪ S′) + v(S ∩ S′).

For an XOS valuation v with associated additive valuations a1, · · · , aq, each ar is called a clause of v.
If a∗ ∈ arg maxar ar(S), then we say a∗ is a maximizing clause of S and a∗({j}) is the supporting price
of good j in this maximizing clause. It is well-known that submodularity implies XOS, and XOS implies
subadditivity. The marginal valuation of a buyer on an additional bundle S′ given that she already has a
bundle S is represented by v(S′ | S) = v(S′ ∪ S)− v(S).

Online Environments. We describe the online environments for submodular valuations; the corresponding
environments for XOS and subadditive valuations can be defined in a similar way. Given a submodular
valuation v over U (1,t) and a submodular valuation v′ over U (1,t+1), we say v′ is extendable from v if for
all S ⊆ U (1,t), v′(S) = v(S). In a prior-free environment, we consider a setting where the valuations are
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selected by an adversary. In other words, the buyers’ valuations for future goods can be arbitrary but must
be extendable from the valuation over the existing goods.

In the Bayesian setting, given a distribution F ti of submodular valuations over U (1,t) with support Vt and
a distribution F t+1

i of submodular valuations over U (1,t+1) with support Vt+1, we say F t+1
i is extendable

from F ti if there exists a partition of Vt+1 as {Qv}v∈Vt , such that for each v ∈ Vt, we have: (1) Qv is
non-empty; (2) for all v′ ∈ Qv, v′ is extendable from v; and (3)

∑
v′∈Qv

Pr[v′|F t+1
i ] = Pr[v|F ti ]. For F t+1

i

that is extendable from F ti and the buyer’s valuation v over U (1,t), the buyer’s valuation v′ over U (1,t+1) is

randomly drawn from Qv such that the probability of choosing v′ ∈ Qv is Pr[v′|F t+1
i ]

Pr[v|F t
i ]

. We assume that F ti
is publicly known and independent across buyers for all t and the buyers’ distributions for the future goods
can be arbitrarily chosen but must be extendable from the distributions over the existing goods.

Let V be some set of valuations. We use 〈f, p〉 to denote a deterministic online mechanism. f ti : V n →
2U

(1,t)
is the allocation function that maps the valuation profile ~v = (v1, · · · , vn) to a subset of goods,

indicating the set of goods allocated to buyer i in the first t stages. The payment function pti : V n → R maps
the valuation profile to buyer i’s cumulative payment for the first t stages. An allocation rule is valid if for all
t, and two different buyers i, i′, f ti (~v)∩ f ti′(~v) = ∅. Moreover, once a good is sold, the seller cannot retrieve
the good and reallocate it in the future, i.e., ∀t, f ti (~v) ⊆ f t+1

i (~v) for each buyer i; and the item must be sold
before its expiration date, i.e., for any j, we have j ∈ f t′i (~v) for all t′ ≥ e(j) if and only if j ∈ fe(j)i (~v).
Furthermore, for a stage t and two different valuation profiles ~v and ~v′ satisfying vi(S) = v′i(S) for all buyer
i and S ⊆ U (1,t), we must have f ti (~v) = f ti (~v

′) and pti(~v) = pti(~v
′) for all buyer i.

Universally Truthful Mechanisms. We consider myopic buyers, and therefore, incentive compatibility
only concerns the current stage without taking the future into account. In both the prior-free and Bayesian
settings, we are interested in designing universally truthful mechanisms.

Definition 2.3. A deterministic mechanism 〈f, p〉 is truthful if for every stage t, every buyer i, and any
valuations vi, v′i ∈ V with v′i(S) = vi(S) for all S ⊆ U (1,t−1), and any ~v−i ∈ V n−1, we have

vi
(
f ti (vi, ~v−i)

)
− pti(vi, ~v−i) ≥ vi

(
f ti (v

′
i, ~v−i)

)
− pti(v′i, ~v−i).

A randomized mechanism 〈f, p〉 is universally truthful if it is a probability distribution over truthful deter-
ministic mechanisms.

Competitive Ratio. Let Sti be the set of items allocated to buyer i at the end of stage t. We will use
the vectorized symbol without subscript ~St = (St1, · · · , Stn) to represent the overall allocation at the end
of stage t. For convenience, we will use At =

⋃n
i=1 S

t
i to represent the set of items sold in the first t

stages. The welfare with respect to an allocation S is denoted by v(~S) =
∑

i vi(Si). For a set of items
U ′, the welfare-optimal allocation with respect to a valuation profile ~v is represented by OPT(U ′, ~v) =(
OPT1(U

′, ~v), · · · ,OPTn(U ′, ~v)
)
. We will drop ~v from the notation when it is clear from the context. The

performance of our mechanism is measured by its competitive ratio:

Definition 2.4 (Competitive Ratio). For a set V of valuations, in a prior-free setting, an online mechanism
〈f, p〉 is κ-competitive if for any (v1, · · · , vn) ∈ V n and 1 ≤ t ≤ T :

κ · E
[
v
(
f t1(U

(1,t)), · · · , f tn(U (1,t))
)]
≥ v

(
OPT(U (1,t))

)
where the expectation is taken over the randomness of the mechanism. In the Bayesian setting, an online
mechanism 〈f, p〉 is κ-competitive if for any independent distributions F1, · · · , Fn ∈ ∆(V ) and 1 ≤ t ≤ T :

κ · E~v
[
v
(
f t1(U

(1,t)), · · · , f tn(U (1,t))
)]
≥ E~v

[
v
(

OPT(U (1,t))
)]

where the expectation is additionally taken over ~v randomly drawn from the prior
∏
i Fi.
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3 Lower bound for XOS valuations

We show that for XOS valuations, no (randomized) truthful mechanism is o
(
(mT / logmT )1/3

)
-competitive

even in the Bayesian setting (the same lower bound naturally holds in the prior free case as well). Our lower
bound is information-theoretic, which means that it holds even if we do not require the mechanism to be
truthful or computationally efficient. Moreover, our construction works even when the buyers are symmetric,
i.e., all the buyers have the same valuation distributions.

Theorem 3.1. When the buyers’ valuations are XOS and all items expire immediately, no randomized mech-
anism is o(n)-competitive for mT = Ω(n3 log n), even if all buyers have i.i.d. valuations.

We provide the high level idea about our construction, while the full proof is deferred to Appendix A.
We consider an online environment with T stages with a single new item at each stage, i.e., item j arrives
at stage j. For each buyer, we will construct an XOS valuation with n clauses. For ease of presentation, we
represent buyer k’s XOS valuation by a matrix Zk such that row i corresponds to the i-th clause and column
j corresponds to the j-th item, i.e., Zk(i, j) is the value of item j in the i-th clause of buyer k. On the arrival
of item j, for each buyer k, we add a new column in Zk as follows: pick a row i uniformly at random (and
independent of any other choice) and assign Zk(i, j) = 1 and Zk(i′, j) = 0 for all i′ 6= i.

We first argue the performance of the optimal offline allocation on these valuations. Let ck be the k-th
clause of buyer k, i.e., the k-th row in Zk. We will allocate item j to any buyer k with ck(j) = 1; and if such
a buyer does not exist, then we allocate item j arbitrarily. Notice that for each pair (k, j) of buyer k and
item j, we have Pr[ck(j) = 1] = 1/n, and therefore, Pr[∃k, ck(j) = 1] ≥ 1− e−1 = Ω(1). By linearity of
the expectation, the expected welfare of the optimal offline allocation is Ω(T ).

We are left to bound the welfare generated by an online algorithm. In order to build intuition, let us
first make the simplifying, but false, assumption that the online algorithm cannot observe the realization of
Zk(i, j) for all buyers k and clauses i when a new item j arrives. Now, suppose that the online algorithm
assigns sk items in total to buyer k. Note that for each of these sk items, exactly one clause chosen uniformly
at random has a valuation of 1, and all other clauses have valuation of 0, for buyer k. If we think of the n
clauses as bins, and a valuation of 1 for each of the sk items as balls being thrown uniformly at random into
the bins, then the clause with the maximum valuation for these sk items corresponds to the bin with the most
balls. Using this correspondence, a simple calculation then shows that the welfare of the online algorithm
summed over all the buyers concentrates around T/n, thereby giving us the lower bound we are after.

But, our simplifying assumption is false because the adversary must reveal the realization of Zk(i, j)
for all clauses i and buyers k when item j arrives. Recall that our goal, for any buyer k, is to extend one
clause with 1 and the other n− 1 clauses with 0s without revealing which clause got a 1. To this end, on the
arrival of item j, we create a temporary matrix Z ′k with 2n rows such that both the (2i − 1)-th and (2i)-th
rows of Z ′k are copies of the i-th row of the current Zk. For each i, we will assign Z ′k(2i − 1, j) = 1 and
Z ′k(2i, j) = 0, and present Z ′k to the online algorithm at stage j. After the end of stage j, we pick an index
i ∈ {1, 2, . . . , n} uniformly at random, and reconstruct Zk as follows: Zk(i, ·) = Z ′k(2i− 1, ·) while for all
i′ 6= i, we have Zk(i′, ·) = Z ′k(2i

′, ·). Such a procedure successfully hides the random choice of i at stage j
since Z ′k does not contain any information about the random choice. We “discard” the remaining n clauses
in Z ′k by giving them valuations of 0 for all items henceforth.

4 Prior-free Online Mechanism for Submodular Valuations

In this section, we proceed to design our online mechanisms for submodular valuations. The omitted proofs
in this section are deferred to Appendix B. Our online mechanism for the prior-free setting PRIORFREEON-
LINE consists of a second price auction and a random fixed-price auction. Before the first stage, the seller
flips a fair coin and runs the second price auction if it is heads, and the random fixed-price auction otherwise.
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Second Price Auction. At stage t, we will run a second price auction without a reserve price for the
bundle Bt that arrives at stage t. Notice that the second price auction is deterministic and dominant-strategy
incentive-compatible, and thus, at stage t, each buyer i will truthfully report her marginal valuation over the
bundle: vi(Bt | St−1i ). (Recall that St−1i is the set of items allocated to buyer i till stage t− 1.)
Random fixed-price Auction. We first divide the buyers into two groups: STAT and MECH where the
group for each buyer is chosen independently and uniformly at random. Note that such a partitioning is
done only once before the arrival of the first item. For convenience, let O(U ′, C) be the set of all possible
allocations for items U ′ and buyers C ⊆ [n] and OPT

(t1,t2)
C = arg max~S∈O(U(t1,t2),C)

∑
i vi(Si) repre-

sent the welfare maximizing allocation of items between stage t1 and t2 to buyers C. As a shorthand, let
OPT(t1,t2) = OPT

(t1,t2)
[n] be the welfare maximizing allocation to all buyers. In addition, let OPT(t1,t2)|C

be the optimal allocation for all buyers restricted to buyers in C, such that OPT
(t1,t2)
i |C = OPT

(t1,t2)
i if

i ∈ C and otherwise, OPT
(t1,t2)
i |C = ∅. Note that in general, OPT

(t1,t2)
C 6= OPT(t1,t2)|C . For each stage t,

we maintain an estimate estt of the optimal welfare of allocating U (1,t) to buyers in STAT.

Theorem 4.1 ([18, 21, 23]). For complement-free valuations, there exists an efficient 2-approximation es-
timation algorithm for the optimal welfare using demand queries and value queries. The estimate estt
obtained from the algorithm satisfies 1

2v(OPT(1,t)|STAT) ≤ estt ≤ v(OPT(1,t)).

Given the estimate estt, let Pt = {( estt
c·m2

t
), ( estt

c
2
·m2

t
), · · · , ( c2 ·m

2
t · estt), (c ·m2

t · estt)} be a set of prices,

where c is a sufficiently large constant and mt = |U (1,t)|. Intuitively, the size of Pt is O(logmt) and
the price grows geometrically such that the j-th price is estt

c·m2
t
· 2j−1. We are now ready to describe our

random fixed-price auction for the buyers in MECH (see Algorithm 1). Notice that given a fixed price pt,
the fixed-price auction is truthful at stage t.

for each stage t do
Set pt to be a price drawn from Pt uniformly at random
Let M = Bt

for each buyer i ∈ MECH in some arbitrary order do
Let Di = arg maxS∈M vi(S | St−1i )− pt|S|
Allocate Di to buyer i, i.e., Sti = St−1i ∪Di, and charge her pt|Di|
M = M \Di

end
end

Algorithm 1: PRIORFREEONLINE: Online Auction in the Prior-free Environment

Compared to the mechanism used in [14, 22] for the static setting, one main difference is that our
mechanism samples a new price per stage instead of using only one price throughout all stages. Moreover,
the set of prices we sample from per stage is updated dynamically. Sampling new prices per stage also
introduces new challenges into the analysis. Nonetheless, we manage to show that:

Theorem 4.2. PRIORFREEONLINE is universally truthful and O(logmT )-competitive.

Our analysis uses submodularity in both the second price auction and the random fixed-price auction.
We consider two situations depending on whether a dominant buyer exists. Buyer i is a dominant buyer

if vi
(
U (1,T )

)
≥ v(OPT(1,T ))

104 logmT
. When there exists a dominant buyer, it is easy to show that the welfare of

running the second price auction is at least the valuation of the dominant buyer i∗ over the entire bundle,
i.e., vi∗

(
U (1,T )

)
, which immediately yields a O(logmT ) approximation.
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Lemma 4.3. For a set V of submodular valuations, when there exists a dominant buyer, the second price

auction yields welfare at least
v(OPT(1,T ))
104 logmT

.

Proof. Let buyer i∗ be one of the dominant buyers. For convenience, let it be the buyer winning the second
price auction at time t, and we have v(~ST ) =

∑
i vi(S

T
i ) =

∑
t vit(B

t | St−1it
). In second price auctions,

the marginal value of the winner is no less than that of any other buyer, so we have

v(~ST ) =
∑
t

vit(B
t | St−1it

) ≥
∑
t

vi∗(B
t | St−1i∗ ) ≥

∑
t

vi∗(B
t | U t−1) = vi∗(U

(1,T )), (1)

where the second inequality follows from submodularity of vi∗ and the fact that St−1i∗ ⊆ U t−1.

From now on, we assume there is no dominant buyer. To analyze the performance of our algorithm, we
will use v

(
OPT(t∗,T )

)
as a benchmark where t∗ is chosen from Lemma 4.4 such that v

(
OPT(t∗,T )

)
≥

v(OPT(1,T ))
2 and v

(
OPT(1,t)

)
≥ v(OPT(1,T ))

2 for all t ≥ t∗. Such a choice is necessary, because intuitively,
the initial stages are too sensitive for our analysis to work effectively.

Lemma 4.4. ∃t∗ s.t. v(OPT(t∗,T )) ≥ v(OPT(1,T ))
2 and v(OPT(1,t)) ≥ v(OPT(1,T ))

2 for all t ≥ t∗.

We consider the set T = {(t1, t2) | t1 ≤ t2 ≤ T, v(OPT(t1,t2)) ≥ v(OPT(1,T ))/256}. Intuitively,
(t1, t2) ∈ T if the optimal welfare restricted to the items appearing between stages t1 and t2 is a constant
fraction of the optimal welfare over all items. The next lemma shows that for any (t1, t2) ∈ T , both
v(OPT(t1,t2)|STAT) and v(OPT(t1,t2)|MECH) are a constant fraction of v(OPT(t1,t2)).

Lemma 4.5. For any (t1, t2) ∈ T , with probability at least 1− 1
mT

, we have

min{v(OPT(t1,t2)|STAT), v(OPT(t1,t2)|MECH)} ≥ 1

4
v(OPT(t1,t2)). (2)

Note that Lemma 4.4 implies that (a) (t∗, T ) ∈ T , and (b) for any t ≥ t∗, (1, t) ∈ T . Therefore,
Lemma 4.5 can be applied to all these intervals. The key lemma we are going to establish next is that with
Ω( 1

logmT
) probability, the item goes to the market with a desirable price constructed from additive valuation

functions that represent the submodular valuations.

Definition 4.6 ([8]). A set V of valuations can be point-wise β-approximated by additive valuations if for
any v ∈ V and S ⊆ U , v can be point-wise β-approximated at S by an additive valuation v′ such that
β · v′(S) ≥ v(S) and ∀S′ ⊆ U , v′(S′) ≤ v(S′).

It is well-known that submodular valuations are point-wise 1-approximated by additive valuations (see,
e.g., [18]). However, an 1-approximated additive valuation v′ is not enough for our analysis since the
smallest non-zero entry vmin > 0 could be arbitrarily small such that we can no longer guarantee the
random price is within [c1vmin, c2vmin] for some constants 0 < c1 < c2 < 1 with Ω( 1

mT
) probability.

To overcome this difficulty, we trim the additive valuations in an online manner; roughly speaking, our
criteria for trimming each item become looser and looser as more items arrive. This is key for the trimming
procedure to be compatible with the online environment.

Lemma 4.7. There exist additive valuations (v′1, · · · , v′n) such that:

• v′i(S) ≤ vi(S) for any buyer i and S ⊆ U (1,T );

• v′(OPT(t∗,T )|MECH) ≥ v(OPT(t∗,T )|MECH)/10 ≥ v(OPT(t∗,T ))/40;
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• if j /∈ OPT
(t∗,T )
i |MECH, v′i(j) = 0;

• for j ∈ OPT
(t∗,T )
i |MECH, if v′i(j) > 0, then v′i(j) ≥ v′(OPT

(t∗,T )
i |MECH)/(2j2).

We construct (v′1, · · · , v′n) satisfying the properties defined in Lemma 4.7. Let the supporting price of
item j be pj = v′i(j) for j ∈ OPT

(t∗,T )
i . We say an item j ∈ Bt is a hit-item if the random price pt satisfies

1
4pj ≤ p

t ≤ 1
2pj .

Lemma 4.8. For j ∈ Bt with pj > 0 and t ≥ t∗, with probability Ω( 1
logmt

), 1
4pj ≤ p

t ≤ 1
2pj .

Let G be the set of hit-items in U (t∗,T ) and SOLD be the set of items that are sold. Notice that if
j ∈ G ∩ SOLD, it contributes revenue pj to the welfare. All that remains to show is that the buyers’
utilities can capture the welfare generated by the unsold items. While this is quite well-understood in
static environments, in the online environment that we consider, one additional difficulty is to summarize
the contribution of unsold items over stages. Moreover, in light of our impossibility results, for any such
summarization argument to be useful, it must apply only to submodular valuations. Below we present such
an argument. Recall that STi is a set of items allocated to buyer i at the end of stage T .

Lemma 4.9.
∑

i vi(S
T
i ) ≥ 1

2

∑
G\SOLD pj .

Proof. Let γi = (OPT
(t∗,T )
i ∩G) \ SOLD. Consider the telescoping sum of vi(γi | STi ):

vi
(
γi | STi

)
=
∑
t≥t∗

vi

(
γi ∩Bt | γi ∩ U (1,t−1) ∪ STi

)
.

Because of the submodularity of vi and the fact that Sti ⊆ STi ⊆ γi ∩ U (1,t−1) ∪ STi ,

vi
(
γi | STi

)
≤
∑
t≥t∗

vi
(
γi ∩Bt | Sti

)
. (3)

Now consider the behavior of buyer i at time t. After buying Sti \S
t−1
i at stage t, buyer i could still choose to

buy γi ∩Bt, which would give her vi
(
γi ∩Bt | Sti

)
value with payment

∑
j∈γi∩Bt pt. The only reason that

buyer i does not do so is that her marginal gain is at most her payment, i.e., vi
(
γi ∩Bt | Sti

)
≤
∑

j∈γi∩Bt pt.
So given that pt ≤ pj/2 for j ∈ G, we have

vi
(
γi | STi

)
≤
∑
t≥t∗

vi
(
γi ∩Bt | Sti

)
≤
∑
t≥t∗

∑
j∈γi∩Bt

pt ≤ 1

2

∑
j∈γi

pj =
1

2
v′i(γi).

Therefore, buyer i’s value is vi
(
STi
)

= vi
(
STi ∪ γi

)
− vi

(
γi | STi

)
≥ vi(γi)− 1

2v
′
i(γi) ≥ 1

2

∑
j∈γi pj .

We can now proceed to prove Theorem 4.2 by combining the contributions from items that are sold
and items that are not sold. Note that our proof breaks for XOS valuations since we use the property of
submodularity in (1) for the welfare guarantee of the second price auction (Lemma 4.3), and in (3) for our
revenue-utility decomposition argument for submodular valuations (Lemma 4.9).

5 Bayesian Online Mechanism for Submodular Valuations

In this section, we extend our results to a Bayesian setting, where the buyers’ valuations are drawn indepen-
dently from prior distributions that are common knowledge. The omitted proofs are deferred to Appendix C.
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We design an efficient and universally truthful mechanism which guarantees 1
8 of the the optimal welfare

in expectation. Compared to the static setting [20], the first challenge is to establish a benchmark and its
corresponding supporting prices in an online environment. Moreover, such a benchmark must be stable,
in the sense that, roughly speaking, as soon as an item arrives, the benchmark restricted to this item can
be calculated immediately, and is no longer affected by any future items. To tackle this difficulty, we first
establish an offline benchmark that guarantees a constant fraction of the welfare produced by the optimal
offline allocation algorithm. Our benchmark is inspired by the greedy algorithm to online optimization for
submodular valuations [21, 23]. We then show that our online truthful mechanism can approximate the
offline benchmark with a constant ratio.
Offline benchmark and supporting prices. For an offline allocation algorithm A, let the allocation that
A generates with items U and valuations ~v as input be A(U,~v) = (A1(U,~v), . . . ,An(U,~v)). Consider the
greedy allocation rule A defined inductively, as follows.

Ai
(
[j], ~v

)
=

{
Ai
(
[j − 1], ~v

)
∪ {j}, if i = argmaxi′ vi′

(
{j} | Ai′

(
[j − 1], ~v

))
Ai
(
[j − 1], ~v

)
, otherwise

where [j] = {1, · · · , j} and ties are broken in any consistent manner. In other words, A allocates items in
a greedy manner such that item j is allocated to the buyer with the largest marginal value for item j. It is
known that A always produces a 2-approximation of the optimal offline allocation.

Lemma 5.1 ([21, 23]). For any U and submodular valuations ~v ∈ V n, v
(
A(U,~v)

)
≥ 1

2v
(
OPT(U,~v)

)
.

We define the supporting prices with respect to ~v for item j from the greedy allocation A:

SPj

(
A(U (1,t), ~v), ~v

)
=
∑
i

I
[
j ∈ Ai

(
U (1,t), ~v

)]
· vi
(
{j} | Ai

(
[j − 1], ~v

))
.

That is, SPj is the marginal value of j for the buyer who receives j according to the greedy allocation A.
These prices support the welfare generated by A in the following sense:

Lemma 5.2. The supporting prices SPj

(
A
(
U (1,T ), ~v

)
, ~v
)

satisfy for any buyer i,∑
j∈Ai

(
U(1,T ),~v

) SPj

(
A
(
U (1,T ), ~v

)
, ~v
)

= vi

(
Ai
(
U (1,T ), ~v

))
.

Moreover, for any buyer i and S ⊆ Ai
(
U (1,T ), ~v

)
, we have

∑
j∈S SPj

(
A
(
U (1,T ), ~v

)
, ~v
)
≤ vi(S).

In the greedy allocation algorithm A, for j ∈ Bt, I
[
j ∈ Ai

(
U (1,T ), ~v

)]
= I

[
j ∈ Ai

(
U (1,t), ~v

)]
, which

implies that SPj

(
A
(
U (1,t), ~v

)
, ~v
)

= SPj

(
A
(
U (1,T ), ~v

)
, ~v
)

. For each item j ∈ Bt, we will set pj to be

half of the expectation of SPj

(
A
(
U (1,t), ~v

)
, ~v
)

, i.e., pj = 1
2 · E~v

[
SPj

(
A
(
U (1,t), ~v

)
, ~v
)]

. We are now
ready to present our online mechanism BAYESIANONLINE for the Bayesian environment (Algorithm 2).
We emphasize that it is crucial to approach the buyers in the same ordering for all stages and we choose the
natural order {1, · · · , n} for ease of presentation.

Our mechanism is truthful since for each stage, the posted-price auction is truthful. To implement the
mechanism, notice that for j ∈ Bt, pj = 1

2 ·E~v
[
SPj

(
A
(
U (1,t), ~v

)
, ~v
)]

only depends on F t1, · · · , F tn, which
are already known to the mechanism upon the arrival of item j.

Theorem 5.3. BAYESIANONLINE is universally truthful and 8-competitive.
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for each stage t do
Let M = Bt

for each buyer i in the ordering of {1, · · · , n} do
Let Di = arg maxS∈M vi(S | St−1i )−

∑
j∈S pj

Allocate Di to buyer i (Sti = St−1i ∪Di) and charge her
∑

j∈Di
pj

M = M \Di

end
end

Algorithm 2: BAYESIANONLINE: Online Auction in the Bayesian Environment

For convenience, let ~ST (~v) represent the allocation after stage T by our online mechanism BAYESIANON-
LINE when the realized valuation profile is ~v. To prove Theorem 5.3, we first generalize our revenue-
utility decomposition argument (Lemma 4.9) to the Bayesian setting, allowing for a summarization of
the contributions from items over stages. Fix a buyer i’s valuation vi and consider two arbitrary valua-
tion profiles ~v = (vi, ~v−i) and ~v′ = (vi, ~v

′
−i). Let Wi(~v,~v

′) = Ai(U (1,T ), ~v′) ∩ STi (~v) and Yi(~v,~v′) =

Ai(U (1,T ), ~v′) \
(⋃

i′≤i S
T
i′ (~v)

)
.

Lemma 5.4. For any buyer i and two valuation profiles ~v = (vi, ~v−i) and ~v′ = (vi, ~v
′
−i),

vi
(
STi (~v)

)
≥ vi

(
Wi(~v,~v

′) ∪ Yi(~v,~v′)
)
−

∑
j∈Yi(~v,~v′)

pj .

Proof. For ease of presentation, let STi = STi (~v), Wi = Wi(~v,~v
′), and Yi = Yi(~v,~v

′). Then, we have

vi
(
STi
)

= vi
(
STi ∪ Yi

)
− vi

(
Yi | STi

)
= vi

(
STi ∪ Yi

)
−
∑
t

vi

(
Yi ∩Bt | STi ∪

(
Yi ∩ U (1,t−1)))

where the last inequality is due to the telescoping sum representation of vi
(
Yi | STi

)
. Notice that Sti ⊆

STi ⊆ STi ∪
(
Yi ∩ U (1,t−1)) and we have

vi
(
STi
)
≥ vi

(
STi ∪ Yi

)
−
∑
t

vi
(
Yi ∩Bt | Sti

)
, (4)

where the inequality follows submodularity. Since buyer i did not purchase bundle Yi ∩ Bt when she has
already purchased Sti , the price for acquiring Yi ∩Bt must be larger than her marginal value. Therefore, we
have vi

(
STi
)
≥ vi

(
STi ∪ Yi

)
−
∑

t

∑
j∈Yi∩Bt pj . We finish the proof by noticing that

∑
t

∑
j∈Yi∩Bt pj =∑

j∈Yi pj and vi
(
STi ∪ Yi

)
≥ vi (Wi ∪ Yi) since Wi ⊆ STi .

We are ready to prove Theorem 5.3 by noticing that Lemma 5.4 implies vi
(
STi (~v)

)
can be lower

bounded as vi
(
STi (~v)

)
≥ E~v′−i

[
vi

(
Wi(~v,~v

′) ∪ Yi(~v,~v′)
)
−
∑

j∈Yi(~v,~v′) pj

]
, where ~v′−i ∼

∏
i′ 6=i F

T
i .

Proof of Theorem 5.3. Let SOLD(~v) be the set of items that are sold in BAYESIANONLINE when the re-
alized valuation profile is ~v. Moreover, let SOLDi(~v−i) be the set of items that are sold to some buyer in
[i − 1] when the realized valuation profile for other buyers is ~v−i. Notice that if item j is sold, then item j
contributes revenue pj to the welfare. Therefore, we have

E~v
[
v
(
~ST (~v)

)]
≥
∑
j

Pr
~v

[
j ∈ SOLD(~v)

]
· pj =

1

2

∑
j

Pr
~v

[
j ∈ SOLD(~v)

]
·E~v

[
SPj

(
A(U (1,T ), ~v

)
, ~v
)]
.
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We now proceed to show that,

E~v
[
v
(
~ST (~v)

)]
≥ 1

2

∑
j

Pr
~v

[
j /∈ SOLD(~v)

]
· E~v

[
SPj

(
A
(
U (1,T ), ~v

)
, ~v
)]
.

From Lemma 5.4, we have that E~v
[
vi
(
STi (~v)

)]
is at least:

Evi,~v−i,~v′−i

vi(Wi(~v,~v
′) ∪ Yi(~v,~v′)

)
−
∑
j

I
[
j ∈ Yi(~v,~v′)

]
· pj


≥ Evi,~v−i,~v′−i

∑
j

I
[
j ∈ Ai

(
U (1,T ), vi, ~v

′
−i
)]
· I
[
j /∈ SOLDi(~v−i)

]
· SPj

(
A
(
U (1,T ), vi, ~v

′
−i), vi, ~v

′
−i
))

−
∑
j

I
[
j ∈ Ai

(
U (1,T ), vi, ~v

′
−i
)]
· I
[
j /∈ SOLDi(~v−i)

]
· pj


=
∑
j

Pr
~v−i

[
j /∈ SOLDi(~v−i)

]
· Evi,~v′−i

[
I
[
j ∈ Ai

(
U (1,T ), vi, ~v

′
−i
)]
·
(

SPj
(
A(U (1,T ), vi, ~v

′
−i), vi, ~v

′
−i
)
− pj

)]
≥
∑
j

Pr
~v

[
j /∈ SOLD(~v)

]
· E~v

[
I
[
j ∈ Ai

(
U (1,T ), ~v

)]
·
(

SPj
(
A(U (1,T ), ~v), ~v

)
− pj

)]
.

where the first inequality follows that Wi(~v,~v
′) ∪ Yi(~v,~v′) = Ai(U (1,T ), ~v′) \

(⋃
i′<i Si′(~v)

)
, Lemma 5.2,

and Wi(~v,~v
′) ∪ Yi(~v,~v′) ⊇ Yi(~v,~v

′), while the equality follows the independence between SOLDi(~v−i)
and (vi, ~v

′
−i). Particularly, the independence between SOLDi(~v−i) and (vi, ~v

′
−i) is established from the

fact that the mechanism approaches the buyers in the same ordering for all stages. This is the reason why
approaching the buyers in the same ordering for all stages is crucial.

Summing over i, we have
∑

i E~v
[
vi
(
STi (~v)

)]
is at least

∑
j

Pr
~v

[
j /∈ SOLD(~v)

]
· E~v

[∑
i

I
[
j ∈ Ai

(
U (1,T ), ~v

)]
·
(

SPj
(
A(U (1,T ), ~v), ~v

)
− pj

)]

=
∑
j

Pr
~v

[
j /∈ SOLD(~v)

]
· E~v

[
SPj

(
A
(
U (1,T ), ~v

)
, ~v
)
− pj

]
=

1

2

∑
j

Pr
~v

[
j /∈ SOLD(~v)

]
· E~v

[
SPj

(
A
(
U (1,T ), ~v

)
, ~v
)]
.

Putting the two parts for sold items and unsold items together, we have

E~v
[
v
(
~ST (~v)

)]
≥ 1

4

∑
j

E~v
[
SPj

(
A
(
U (1,T ), ~v

))]
=

1

4
E~v
[
v
(
A
(
U (1,T ), ~v

))]
≥ 1

8
E~v
[
v
(

OPT
(
U (1,T )

))]
where the equality follows Lemma 5.2 and the last inequality follows Lemma 5.1.

Note that our proof breaks for XOS valuations since our offline benchmark highly relies on submodular
valuations (Lemma 5.1 and Lemma 5.2) and we use the property of submodularity in (4) for our revenue-
utility decomposition for submodular valuations (Lemma 5.4).

11



6 Online Mechanisms with No Expiration Date

In this section, we describe our reduction from the setting with no expiration date to the classical offline
environment. The only condition required by the reduction is that the offline mechanism needs to be ap-
proximately monotone, which roughly says that if we give buyers some items before the mechanism starts,
then the (expected) welfare after running the mechanism is not much smaller than the welfare from running
the mechanism without the initial items. This condition holds for most, if not all, existing mechanisms for
subadditive (including XOS) buyers. As long as the condition holds, our reduction preserves the approxi-
mation ratio of the offline mechanism up to a constant factor in the no expiration environment.

6.1 The Reduction

We first state the requirement of our reduction.

Definition 6.1 (Approximate Monotonicity). A truthful mechanism M, which maps a set of items U and
valuations ~v to a (randomized) allocationM(U,~v) is approximately monotone for a class V of valuations,
if there exists a constant C > 0, such that for any ~U0 = {U0

1 , · · · , U0
n} and U with U ∩ U0

i = ∅ for all i,
and ~v ∈ Vn where the domain of vi is over

⋃n
i=1 U

0
i ∪ U ,

E

[∑
i

vi

(
Mi(U,~v)

)]
≤ C · E

[
·
∑
i

vi

(
U0
i ∪Mi(U, vi|U0

i
)
)]

.

where vi|U0
i
(S) = vi(S ∪ U0

i )− vi(U0
i ) for all i and S ⊆ U .

As discussed above, the condition can be interpreted as giving itemsU0
i to buyer i for free before running

M does not hurt the expected welfare more than a multiplicative constant factor. While this interpretation
makes the condition appear trivially true, we emphasize that it is technically non-trivial to prove an offline
mechanism is approximately monotone since vi|U0

i
is not necessarily a member of the class V , e.g., when

V is the class of XOS valuations. We show that fortunately, most existing mechanisms, including those
inducing the desired competitive ratios in the literature, are in fact approximately monotone. The proofs are
deferred to Appendix D.3.

6.1.1 Prior-free setting

We are now ready to give our reduction in the prior-free setting. Before the first stage, the seller flips a fair
coin. If the result is heads, she implements the second price auction with reserve; otherwise if the result is
tails, she runs an estimation scheme and makes repeated calls upon the offline mechanism.

Second Price Auction with Reserve At stage t, we will run a second price auction for the entire bundle
of unsold items U (1,t) \At−1 with a reserve price set to the total welfare of the allocated items, i.e., v(~St−1).
Notice that the second price auction is deterministic and dominant-strategy incentive-compatible, and thus,
at stage t, each buyer iwill truthfully report her marginal valuation over the bundle: vi(U (1,t)\At−1 | St−1i ).
Once the bundle is sold to buyer i at stage t, the seller can update the total welfare of the allocated items to
v(~St) = v(~St−1) + vi(U

(1,t) \At−1 | St−1i ).

The Estimation Scheme We first divide the buyers into two groups, STAT and MECH, where the group
for each buyer is chosen independently and uniformly at random. For each stage t, we maintain an estimate
estt of the optimal welfare of allocating U (1,t) to agents in STAT, using the 2-approximation algorithm for
subadditive valuations by Feige [18] (see Theorem 4.1). The estimation scheme works in the following way:
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• Initialize k = 0, est0 = 0, and t0 = 0.

• At each time t, compute estt. If estt ≥ 8esttk , set k = k + 1 and tk = t; call the offline mechanism
with items U (tk−1+1,t) and buyers MECH.

In words, we implement the offline mechanism on a new batch of items when the current estimate estt is at
least 8 times the estimate when the previous allocation happened. Intuitively, this guarantees that there is
high enough welfare to be allocated in the current batch of items and at the same time, the welfare loss is
low, if the market terminates with these items unallocated.

6.1.2 Bayesian setting

For the Bayesian setting, there is no need to flip a coin to implement two different mechanisms. In fact, it
suffices to implement the estimation scheme only:

The Estimation Scheme For each stage t, we compute an estimate estt of the expected optimal welfare
of allocating U (1,t) from the prior. The estimation scheme works in the following way:

• Initialize k = 0, est0 = 0, and t0 = 0.

• At each time t, compute estt. If estt ≥ 2esttk , set k = k + 1 and tk = t; call the offline mechanism
with items U (tk−1+1,t), and all the buyers.

In words, we implement the offline mechanism on a new batch of items when the current estimate estt is at
least twice the estimate when the previous allocation happened.

6.2 Analysis

In the prior-free setting, the second price auction with reserve is clearly incentive-compatible. As for the
estimation scheme in the prior-free setting, observe that the scheme queries only buyers in STAT, who
get no items whatsoever, and therefore will answer all queries truthfully. On the other hand, the offline
mechanism interacts only with buyers in MECH, whom the estimation scheme does not query at all. These
buyers, being myopic, will act truthfully as long as the offline mechanism itself is truthful. Therefore,
the estimation scheme is also incentive-compatible, and thus, the combination of these two subroutines is
universally truthful. A similar argument can demonstrate that the estimation scheme in the Bayesian setting
is also universally truthful.

The following theorem, which is the main result of this section, translates approximation guarantees in
the classical offline setting to the no expiration environment. The only requirement, as stated above, is that
the offline mechanism must be approximately monotone, which is indeed satisfied by almost all existing
results, and in particular, by the state-of-the-art mechanisms for subadditive and XOS buyers, respectively,

Theorem 6.2. For a set V of complement-free valuations, suppose there exists a truthful offline β(mT )-
approximate mechanism with mT items and the offline mechanism is approximately monotone. Then, there
exists a truthful online O (β(mT ))-competitive mechanism for the no expiration environment.

The rest of this section is devoted to providing high-level proof ideas for Theorem 6.2. The omitted
proofs are deferred to Appendix D. The proof for the Bayesian setting follows the fact that the state-of-
art mechanisms are approximately monotone and an argument presented below for the estimation scheme
similar to the prior-free setting. We will focus on the prior-free setting from now on. Note that it suffices to
show that for a fixed end of horizon T , the expected welfare generated by our reduction is at least Ω

(
1

β(mT )

)
fraction of the welfare of the optimal allocation. Our analysis is divided into two parts depending on whether

a dominant buyer exists: buyer i is dominant if vi(U (1,T )) ≥ v(OPT(U(1,T )))
104

.

13



Lemma 6.3. When there exists a dominant buyer, the second price auction with reserve guarantees Ω (1)
fraction of the optimal welfare.

From now on, we will focus on the case in which there is no dominant buyer. Moreover, let K be
the final value of k at the end of the estimation scheme, which is the number of calls made to the offline
mechanism. The estimation scheme divides items into batches, and runs one auction for each batch. The
approximation guarantee of the offline mechanism then applies with respect to the welfare supported by
these individual batches. We first need one of these batches to be large enough to support a constant fraction
of the welfare given by the offline optimal allocation. To this end, we consider batches which overlap
the time interval [T1, T2], on which the optimal welfare from the prefix of items U (1,t) for t ∈ [T1, T2]

grows from v(OPT(1,T ))
1000 to v(OPT(1,T ))

100 . Subadditivity guarantees that the optimal welfare from U (T1,T2) is
a constant fraction of v(OPT(1,T )). By standard concentration bounds, this welfare is distributed almost
equally into STAT and MECH. As a result, estT1 and estT2 are within a constant factor of each other, and
there are only a constant number of batches overlapping [T1, T2], since est can only increase so much. Thus,
the largest batch among these provides a constant fraction of v(OPT(1,T )) to buyers in MECH:

Lemma 6.4. Suppose there is no dominant agent, i.e., for any agent i, vi(U (1,T )) < v(OPT(1,T ))
104

, and then

with constant probability, there is some k such that v(OPT
(tk−1+1,tk)
MECH ) = Θ(v(OPT(1,T ))), so that the

batch supports enough welfare.

We then focus on this constant-approximate batch guaranteed by Lemma 6.4. We argue that the approx-
imation guarantee of the offline mechanism still holds for this batch, so the welfare from this batch alone is
a good approximation of the offline optimal welfare. While this may appear trivially true, we note that by
the time the offline mechanism is called, the buyers may already possess some items, which may lower their
interest in purchasing new items. Such a change of their behavior has a potential to ruin the welfare guaran-
tee. This, however, will not happen if the offline mechanism is approximately monotone, which concludes
the proof of Theorem 6.2.

7 Other Related Work

Initiated by the seminal work of Dobzinski et al. [14], offline truthful combinatorial auctions have been ex-
tensively studied in the last decade. For general monotone valuations with demand queries, Dobzinski et al.
[14] gave an O(

√
m)-approximation, which matches the communication complexity lower bound by Nisan

[26]. Restricted to complement-free buyers, the first nontrivial O(log2m) upper bound for XOS valuations
was also given by Dobzinski et al. [14]. Dobzinski [9] later improved the upper bound toO(logm log logm)
for subadditive buyers. For XOS buyers, Krysta and Vöcking [22] obtained an upper bound ofO(logm) that
betters the more general bound for subadditive buyers. Later, Dobzinski [11] further improved this bound
to O(

√
logm) for XOS buyers. In a very recent paper, Assadi and Singla [2] gave an O((log logm)3)-

approximate mechanism by combining existing techniques with a novel learning procedure, which itera-
tively estimates the supporting prices of individual items. No super-constant lower bound is known in this
setting. Instead of both demand and value queries, if one were restricted only to value queries, Dobzinski
et al. [13] gave an O(

√
m) upper bound for submodular buyers, which is matched by information-theoretic

[10] and complexity-theoretic [12] lower bounds.
From a pure algorithmic point of view, the problem of computing a welfare maximizing combinatorial

allocation has also been extensively studied. For submodular valuations, Vondrák [28] gave an (e/(e− 1))-
approximation using value queries only, with a matching lower bound by Mirrokni et al. [24]. For the
more general classes of XOS and subadditive valuations, it is impossible to achieve O(

√
m)-approximation

using polynomially many value queries [24], which matches an upper bound by Dobzinski et al. [13]. With
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demand queries, for submodular buyers, a slightly better upper bound was given by Feige and Vondrák
[19], while the best known lower bound is ((2e)/(2e − 1)) [12]. For XOS and subadditive buyers, Feige
[18] gave an (e/(e − 1))-approximation and a 2-approximation respectively, using both value and demand
queries. Another line of related research considers an online setting with sequentially arriving buyers and b
identical copies of each item, which was initiated by Bartal et al. [4] and Awerbuch et al. [3]. In particular,
Krysta and Vöcking [22] gave truthful mechanisms that are O(m1/(b+1) log(bm))-competitive for general
buyers for any b ≥ 1, and O(logm)-competitive for XOS buyers when b = 1. Cole et al. [5] consider a
related setting, where each buyer is present during some time interval, and design prompt mechanisms in this
setting. In Bayesian settings where the distributions of buyers’ valuations is known, the model with buyers
arriving online can be viewed as a combinatorial variant of prophet inequalities. In this setting, Feldman
et al. [20] gave a truthful ((2e)/(e−1))-competitive mechanism for XOS buyers, which was later improved
to 2-competitive by Dütting et al. [15]. Ehsani et al. [17] further showed that the ratio improves to e/(e− 1)
when buyers arrive in a uniformly random order. For subadditive valuations, the O(logm) competitive ratio
by Feldman et al. [20] has been improved to O(logm/ log logm) by Zhang [29], and to O(log logm) by
Dütting et al. [16].

There has been a large body of research on dynamic mechanism design concerning forward-looking
additive buyers in the past decade [1, 7, 25]. For a Bayesian environment, Mirrokni et al. [25] propose
non-clairvoyant mechanisms in which it is always an optimal strategy for the buyers to report truthfully no
matter what the future would be, when the valuations are additive and distributions are independent across
the stages. It is later generalized to a setting with public valuation correlations in which the distributions
can vary with any publicly observable information from the past of the mechanism [7]. Nonetheless, their
model cannot capture submodular valuations.

8 Future Directions

Our works open up several interesting future research directions. We have already remarked on the open
problem of designing a truthful online mechanism for omniscient buyers, i.e., who can plan with future
knowledge, with submodular valuations. Future research can also consider to improve the upper bound
on the welfare approximation in the prior-free online environment with submodular valuations, given the
recent breakthrough in the offline setting by Assadi and Singla [2]. On the other hand, it would also be
interesting if one could establish a super-constant lower bound for the prior-free online environment with
submodular valuations, particularly since no such lower bound is known offline. One can also consider the
middle ground between immediate expiration and no expiration to investigate the effect of expiration dates.
Note that our negative result continues to hold when the shelf life of each item is a constant in relation to
the entire time horizon T . But, it would be interesting to investigate the case when the shelf life is longer,
say a polynomial function such as

√
T .
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A Omitted Proofs of Section 3

A.1 Proof of Theorem 3.1

Proof. Assume that there is one item arriving per stage. We construct the prior distribution by designing a
scheme to generate the collection of additive valuations randomly, proceeding from the first item to the last
item. At stage t, a clause is either outstanding or done. If a clause c is done at stage t, then for all j > t,
c(j) = 0. Our scheme maintains a set of n outstanding clauses at every stage.

Suppose at the end of stage t, the n outstanding clauses are {ct1, . . . , ctn}. Upon the arrival of the (t+1)-
th item at stage (t+1), we create 2n new clauses c′t+1

1 , . . . , c′t+1
n and c′′t+1

1 , . . . , c′′t+1
n . Clause c′t+1

a = [cta, 1]
is obtained by simply appending 1 to the end of cta, and c′′t+1

a = [cta, 0] is obtained by appending 0 to cta.
After the mechanism allocates the (t+ 1)-th item, the adversary flips a coin to choose uniformly at random
some it+1 ∈ {1, · · · , n}. The new outstanding clauses are then

ct+1
a =

{
c′t+1
a , a = it+1

c′′t+1
a , otherwise

.

We now analyze this construction after T stages. Let Zk,i be the i-th outstanding clause at time T in
buyer k’s valuation. First observe that the offline optimal allocation can achieve welfare Ω(T ). This is
because for each item j and any buyer k, with probability 1

n , Zk,k(j) = 1, and with probability

1−
(

1− 1

n

)n
≈ 1− 1

e
,

there is some buyer, denoted by kj ,4 whose valuation satisfies Zkj ,kj (j) = 1. If such a buyer does not exist,
let kj = 0.

Knowing the future realization of all valuations, the offline optimal allocation could assign item j to
buyer kj , and discard j (possibly by assigning j to an arbitrary buyer) when kj = 0. Whenever kj 6= 0, item
j contributes 1 to the total welfare. By the definition of XOS valuations, the expected welfare would be

E

∑
k∈[n]

v({j | kj = k})

 ≥ E

∑
k∈[n]

Zk,k({j | kj = k})

 = E

∑
k∈[n]

∑
j:kj=k

Zk,k(j)


= E

∑
j

I[kj 6= 0]

 =
∑
j

(
1−

(
1− 1

n

)n)
= Ω(T ).

Now consider the welfare obtained by any online mechanism. We upper bound the welfare by upper
bounding the value of each buyer separately.

Fix some buyer k0, random indices it for all t, and outstanding clauses {cta} drawn for k0 for all t, and
a realized allocation STk0 generated by the online mechanism. Let t` be the `-th item assigned to k0 for
1 ≤ ` ≤ |STk0 |. When item t` is assigned to k0, the value of clause ct`a (St`k0) increases by 1 if and only if
it` = a, which happens with probability exactly 1

n . Therefore,

E[cTa (STk0)] =
|STk0 |
n

. (5)

Moreover, by the Chernoff bound,

Pr

[
cTa (STk0)−

|STk0 |
n
≥
√
|STk0 | log n

]
≤ exp(−2 log n) =

1

n2
.

4If there are multiple such buyers, let kj be the one with the smallest index, or simply any of them.
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Taking union bound over the outstanding clauses after stage T , we have

max
a

cTa (STk0) ≤
|STk0 |
n

+
√
|STk0 | log n (6)

with probability at least 1 − 1
n , and with probability at most 1

n , maxa c
T
a (STk0) is at most |STk0 |. Moreover,

notice that we have
E[vk0(STk0)] ≤ E[max

a
cTa (STk0) + 1].

The extra 1 in the inequality is due to the fact that the maximizing clauses at stage T might be one of the
clauses created at stage T rather than one of the outstanding clause after stage T . Nevertheless, note that the
difference between their valuations is at most 1. Using (5) and (6), we have

E[vk0(STk0)] ≤ n− 1

n
·

(
|STk0 |
n

+
√
|STk0 | log n

)
+

1

n
· |STk0 |+ 1 ≤

2|STk0 |
n

+
√
|STk0 | log n+ 1.

Finally, we sum over k0:

E[v(~ST )] ≤
∑
k0

(
2|STk0 |
n

+
√
|STk0 | log n+ 1

)
≤ 2T

n
+
√
Tn log n+ n.

As long as mT = T = Ω(n3 log n), the above inequality implies that E[v(~Ss)] = O
(
T
n

)
.

B Omitted Proofs of Section 4

B.1 Proof of Lemma 4.4

Proof. Let t∗ be the earliest stage such that v(OPT(1,t∗)) ≥ v(OPT(1,T ))
2 . Notice that t∗ ≤ T . The first

property follows immediately from the definition of t∗. For the second property, because of the optimality
of OPT(t∗,T ) and subadditivity of vi,

v(OPT(t∗,T )) ≥
∑
i

vi(OPTi ∩ U (t∗,T )) ≥ v(OPT(1,T ))−
∑
i

vi(OPTi ∩ U (1,t∗−1)).

Again, because of the optimality of OPT(1,t∗−1),

v(OPT(t∗,T )) ≥ v(OPT(1,T ))− v(OPT(1,t∗−1)) ≥ 1

2
v(OPT(1,T )).

B.2 Proof of Lemma 4.5

Proof. Fix t1 ≤ t2 ≤ T where (t1, t2) ∈ T . First note that for any i,

vi(U
(t1,t2)) ≤ vi(U (1,T )) ≤ v(OPT(1,T ))

104 logmT
≤ v(OPT(t1,t2))

24 logmT
.

where the second inequality follows the fact that there is no dominant buyer and the last inequality is due
to the definition of T . Let Xi = 1[i ∈ STAT]. Observe that {Xivi(OPT

(t1,t2)
i )}i are independent random

variables, where Xivi(OPT
(t1,t2)
i ) is in range [0, vi(OPT

(t1,t2)
i )] ⊆ [0, v(OPT(t1,t2))

24 logmT
], and

E

[∑
i

Xivi(OPT
(t1,t2)
i )

]
=

1

2
v(OPT(t1,t2)).
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Applying Hoeffding’s inequality, we have

Pr

[∣∣∣v(OPT(t1,t2)|MECH)− E[v(OPT(t1,t2)|MECH)]
∣∣∣ ≥ 1

4
v(OPT(t1,t2))

]
= Pr

[∣∣∣∣∣∑
i

Xivi(OPTt1,t2
i )− 1

2
v(OPT(t1,t2))

∣∣∣∣∣ ≥ 1

4
v(OPT(t1,t2))

]

≤ exp

−2 ·
(
1
4v(OPT(t1,t2))

)2
∑

i vi(OPT
(t1,t2)
i )2


≤ exp

(
−1

8
· v(OPT(t1,t2))2

24 logmT · (v(OPT(t1,t2))2/(24 logmT ))2

)
= exp(−3 logmT ) =

1

m3
T

.

Exactly the same argument implies the same concentration for v(OPT(t1,t2)|STAT).
Observe that there are at most

(
T
2

)
≤
(
mT
2

)
≤ 1

2m
2
T pairs of t1 and t2 satisfying (2). Taking union bound

over all such pairs and STAT and MECH, we have that (2) holds with probability at least 1− 1
2m

2
T ·2·

1
m3

T
=

1− 1
mT

.

B.3 Proof of Lemma 4.7

Proof. Let v′′i be any additive valuation that point-wise 1-approximates vi at OPT
(t∗,T )
i |MECH. We construct

v′i such that v′i(j) = v′′i (j) if j ∈ OPT
(t∗,T )
i |MECH and v′′i (j) ≥ v′′(OPT(t∗,T )|MECH)

2j2
, while all other entries

are simply 0. Clearly v′i satisfies the first, third and fourth properties in the lemma. For the second property,
notice that we have

v′(OPT(t∗,T )|MECH) =
∑

i∈MECH

∑
j∈OPT

(t∗,T )
i

v′i(j)

≥
∑

i∈MECH

∑
j∈OPT

(t∗,T )
i

(
v′′i (j)− v′′(OPT(t∗,T )|MECH)

2j2

)

≥ v′′(OPT(t∗,T )|MECH)−
∑

1≤j≤m

v′′(OPT(t∗,T )|MECH)

2j2
.

Recall that
∑

1≤j≤∞
1
j2

= π2

6 , and therefore, we have

v′(OPT(t∗,T )|MECH) ≥ v′′(OPT(t∗,T )|MECH)− π2v′′(OPT(t∗,T )|MECH)

12
≥ v(OPT(t∗,T )|MECH)

10
.

B.4 Proof of Lemma 4.8

Proof. Observe that |P t| = O(logmt), so each price is chosen with probability Ω
(

1
logmt

)
. It suffices to

show that there exists p ∈ P t satisfying 1
4pj ≤ p ≤

1
2pj , which is equivalent to showing that

estt

c ·m2
t

≤ v′(OPT(t∗,T )|MECH)

4m2
t

≤ v′(OPT(t∗,T )|MECH)

4j2
≤ 1

2
pj , (7)
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where the second inequality follows the fact that j ≤ mt and

c ·m2
t · estt ≥

v′(OPT(t∗,T )|MECH)

4
≥ 1

4
pj . (8)

Let c = 2048. For the first inequality in (7), since estt ≤ v(OPT(1,T )) and v(OPT(1,T )) ≤ 2v(OPT(t∗,T ))
(Lemma 4.4),

estt
2048m2

t

≤ v(OPT(1,T ))

2048m2
t

≤ v(OPT(t∗,T ))

1024m2
t

.

Now by Lemma 4.5 and Lemma 4.7, we have v(OPT(t∗,T )) ≤ 4v(OPT(t∗,T )|MECH) and v(OPT(t∗,T )|MECH) ≤
10v′(OPT(t∗,T )|MECH), so

estt
2048m2

t

≤ v(OPT(t∗,T )|MECH)

256m2
t

≤ v′(OPT(t∗,T )|MECH)

25.6m2
t

≤ v′(OPT(t∗,T )|MECH)

4m2
t

.

For the first inequality in (8), because estt ≥ v(OPT(1,t)|STAT) and v(OPT(1,t)|STAT) ≥ 1
4v(OPT(1,t))

(Lemma 4.5),

2048m2
t · estt ≥ 1024m2

t · v(OPT(1,t)|STAT) ≥ 256m2
t · v(OPT(1,t)).

Again by Lemma 4.7, v(OPT(1,t)) ≥ 1
2v(OPT(1,T )), so

2048m2
t · estt ≥ 128m2

t · v(OPT(1,T )) ≥ v′(OPT(t∗,T )|MECH)

4
.

B.5 Proof of Theorem 4.2

Proof. We consider each buyer separately. For buyer i ∈ MECH, his welfare contribution to OPT(t∗,T )

can be divided into three different parts:

• those allocated to i, αi = STi ∩ (OPT
(t∗,T )
i ∩G),

• those allocated to some other agent, βi = (∪i′ 6=iSTi′ ) ∩ (OPT
(t∗,T )
i ∩G), and

• those not allocated to anyone, γi = (OPT
(t∗,T )
i ∩G) \ (∪i′∈[n]STi′ ).

We first bound the revenue of the seller, which is at least

REV ≥
∑

i∈MECH

∑
j∈αi∪βi,j∈Bt

pt ≥ 1

4

∑
i∈MECH

∑
j∈αi∪βi

pj .

where the last inequality follows pt ≥ 1
4pj for j ∈ G. As a result, we can bound the total welfare:

v(~ST ) ≥ max

{
REV,

∑
i∈MECH

vi(S
T
i )

}
≥ 1

2
·max

1

4

∑
i∈MECH

∑
j∈αi∪βi

pj ,
∑

i∈MECH

∑
j∈γi

pj


≥ 4

5
· 1

8

∑
i∈MECH

∑
j∈αi∪βi

pj +
1

5
· 1

2

∑
i∈MECH

∑
j∈γi

pj =
1

10

∑
i∈MECH

∑
j∈OPT

(t∗,T )
i ∩G

pj =
1

10

∑
j∈G

pj ,
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where the second inequality follows Lemma 4.9. The welfare guaranteed by our mechanism is

E[v(~ST )] ≥ 1

10
EG

∑
j∈G

pj

 =
1

10

∑
j:pj>0

Pr[j ∈ G] · pj .

Since Pr[j ∈ G] = Ω(1/ logmt) due to Lemma 4.8, we have

E[v(~ST )] ≥ 1

10

∑
j:pj>0

Pr[j ∈ G] · pj ≥
1

10

∑
j:pj>0,j∈Bt

Ω

(
1

logmt

)
· pj

≥ 1

10

∑
j:pj>0

Ω

(
1

logmT

)
· pj = Ω

(
1

logmT

)
· v′(OPT(t∗,T )|MECH)

= Ω

(
1

logmT

)
· v(OPT(1,T )),

where the third inequality follows mt ≤ mT for all t, while the first equality follows the definition of pj ,
and the last equality is due to Lemma 4.7, Lemma 4.5, and the choice of t∗ (Lemma 4.4).

C Omitted Proofs of Section 5

C.1 Proof of Lemma 5.2

Proof. Observe that for any i and j ∈ Ai(U (1,T ), v),

SPj(A(U (1,T ), v)) =
∑
i′

I[j ∈ Ai′(U (1,T ), ~v)]vi′({j} | Ai′([j − 1], v))

= vi({j} | Ai([j − 1], v))

= vi(A([j], ~v) | A([j − 1], ~v)).

The first part of the lemma then follows by summing over j. For the second part, by submodularity

vi(S) =
∑
j∈S

vi({j} | S ∩ [j − 1]) ≥
∑
j∈S

vi({j} | Ai(U (1,T ), ~v) ∩ [j − 1]) =
∑
j∈S

SPj(A).

D Omitted Proofs of Section 6

D.1 Proof of Lemma 6.3

Proof. Let i∗ be a dominant buyer. For convenience, let tk be the k-th stage in which the bundle is sold in
the auction, i.e., there exists a buyer i such that vi(U (1,t) \ At−1|St−1i ) ≥ v(~St−1) for t = tk. We show

inductively that for every tk, the welfare v(~Stk) satisfies v(~Stk) ≥ vi∗ (U
(1,tk))
2 .

By our definition of tk, we have Atk = U (1,tk) and Atk−1 = U (1,tk−1). Assume that at tk, the bundle
U (tk−1+1,tk) is allocated to agent ik. Since the bundle is sold, we have

vik(U (tk−1+1,tk) | Stk−1

ik
) ≥ v(~Stk−1) ≥ vi∗(S

tk−1

i∗ ). (9)

On the other hand, since buyer ik wins the second price auction, her bid must be at least the bid submitted
by buyer i∗:

vik(U (tk−1+1,tk) | Stk−1

ik
) ≥ vi∗(U (tk−1+1,tk) | Stk−1

i∗ ). (10)
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Combining (9) and (10), we have

2vik(U (tk−1+1,tk) | Stk−1

ik
) ≥ vi∗(U (tk−1+1,tk)) ≥ vi∗(U (tk−1+1,tk) | U (1,tk−1)), (11)

where the last inequality is by subadditivity. Therefore, we have:

v(~Stk) = v(~Stk−1) + vik(U (tk−1+1,tk) | Stk−1

ik
)

≥ 1

2
vi∗(U

(1,tk−1)) +
1

2
vi∗(U

(tk−1+1,tk) | U (1,tk−1)) (induction hypothesis and (11))

=
1

2
vi∗(U

(1,tk)).

We will finish our proof by showing that at stage T ,

v(~ST ) ≥ 1

5
vi∗(U

(1,T )) ≥ 1

5
·
v
(
OPT(U (1,T ))

)
104

.

Let tK is the last stage in which the bundle is sold in the auction. If tK = T , then the above inequality from
induction implies

v(~ST ) = v(~StK ) ≥ 1

2
vi∗(U

(1,tK)) =
1

2
vi∗(U

(1,T )).

Otherwise, at time T no item is allocated. Using the induction hypothesis and the property of a second-price
auction with reserve, we have that

v(~ST ) ≥ max

{
1

2
vi∗(U

(1,tK)), vi∗(U
(tK+1,T ) | StKi∗ )

}
.

Therefore,

v(~ST ) ≥ 4

5
· 1

2
vi∗(U

(1,tK)) +
1

5
vi∗(U

(tK+1,T ) | StKi∗ )

=
1

5
vi∗(U

(1,tK)) +
1

5
vi∗(S

tK
i∗ ) +

1

5
vi∗(U

(1,tK) | StKi∗ ) +
1

5
vi∗(U

(tK+1,T ) | StKi∗ ).

Using monotonicity of the valuation functions, we get

v(~ST ) ≥ 1

5
vi∗(U

(1,tK)) +
1

5
vi∗(S

tK
i∗ ) +

1

5
vi∗(U

(tK+1,T ) | StKi∗ )

=
1

5
vi∗(U

(1,tK)) +
1

5
vi∗(U

(tK+1,T ))

≥ 1

5
vi∗(U

(1,T ))

where the last inequality follows the subadditivity of the valuation functions.

D.2 Proof of Lemma 6.4

Proof. Let
T1 = min{t | v(OPT(1,t)) ≥ v(OPT(1,T ))/1000},

and
T2 = min{t | v(OPT(1,t)) ≥ v(OPT(1,T ))/100}.
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Observe that T1 ≤ T2 ≤ T , and it is possible that T1 = T2 or T2 = T or T1 = T2 = T . Also, by the
Hoeffding bound, with constant probability, simultaneously for all t ∈ {T1, T2, T},

0.2v(OPT(1,t)) ≤ min(v(OPT(1,t)|STAT), v(OPT(1,t)|MECH))

≤ max(v(OPT(1,t)|STAT), v(OPT(1,t)|MECH)) ≤ 0.8v(OPT(1,t)).

We condition on this from now on.
Note that there are only a constant number of batches ending between T1 and T , inclusively. This is

simply because estT1 = Ω(v(OPT(1,T ))), and esttK ≤ v(OPT(1,T )). We argue that one of these batches
satisfies the conditions of the proposition.

We first show there is enough welfare between T1 and T2 (inclusively) for agents in MECH.

v(OPT
(T1,T2)
MECH ) ≥ v(OPT

(1,T2)
MECH)− v(OPT

(1,T1−1)
MECH ) (subadditivity of OPT)

≥ v(OPT(1,T2)|MECH)− v(OPT(1,T1−1))
(optimality and monotonicity w.r.t. agents of OPT)

≥ 0.2v(OPT(1,T2))− v(OPT(1,T1−1)) (concentration at T2)

≥ 0.2

100
v(OPT(1,T ))− 1

1000
v(OPT(1,T )) (choice of T1 and T2)

= Ω(v(OPT(1,T ))).

Now intuitively, the remaining issue is that maybe the final unclosed batch starts before T2 (inclusively),
and contains most of the above welfare. We show that this is impossible. In particular, there must be a batch
ending after T2 (inclusively). Suppose otherwise, i.e., tK < T2. We show that estT ≥ 8esttK , leading to a
contradiction. In fact,

estT ≥ 1

2
v(OPT(1,T )|STAT) (2-approximation)

≥ 0.1v(OPT(1,T )) (concentration at T )

≥ 8× v(OPT(1,T ))

100

≥ 8× v(OPT(1,T2−1)) (choice of T2)

≥ 8× estT2−1 (definition of estt)

≥ 8× esttK . (tK < T2 and monotonicity of estt)

Now we know:

• v(OPT
(T1,T2)
MECH ) = Θ(v(OPT(1,T ))), and

• there are only O(1) batches overlapping [T1, T2], whose indices are k1, . . . , k2 where tk1−1 < T1 ≤
tk1 , tk2 ≥ T2, and k2 − k1 = O(1).

We only need to show that for some k ∈ {k1, . . . , k2},

v(OPT
(tk−1+1,tk)
MECH ) = Θ(v(OPT(1,T ))).

By subadditivity and monotonicity w.r.t. items of OPT,∑
k∈{k1,...,k2}

v(OPT
(tk−1+1,tk)
MECH ) ≥ v(OPT

(tk1−1+1,tk2 )

MECH ) ≥ v(OPT
(T1,T2)
MECH ).
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Since there are only O(1) summands, for some k,

v(OPT
(tk−1+1,tk)
MECH ) = Θ(v(OPT

(T1,T2)
MECH )) = Θ(v(OPT(1,T ))).

This is our desired batch.

D.3 Approximate Monotonicity of Mechanisms Based on Posted-Price Auctions

In this section, we argue that if the offline mechanism is “essentially based on posted-price auctions and
standard revenue-surplus arguments,” then the mechanism is approximately monotone. The argument pre-
sented here applies in particular for the O(logm log logm)-approximate mechanism for subadditive buyers
[9] and the O((log logm)3)-approximate mechanism for XOS buyers [2] in the prior-free environment, and
the O(log logm)-approximate mechanism for subadditive buyers [16] and 2-approximate mechanism for
XOS buyers [15] in the Bayesian environment.

For brevity we refrain from unnecessarily repeating the entire arguments of the offline mechanisms.
The key property we need to prove is that in a posted-price auction, if enough “under-priced” items remain
unsold, then the allocation supports reasonably large welfare, no matter what items buyers already possess
before the auction. This can be formalized as the following lemma.

Lemma D.1. Given a set of buyers C with valuations ~v, suppose buyer i ∈ C already has items S0
i . Consider

a posted-price auction that is run with items U and prices pj for j ∈ U as input and after the auction, buyer
i has items S0

i ∪ S1
i .

Let OPT be an allocation maximizing the welfare
∑

i∈C vi(OPTi ∪ S0
i ). Suppose {qj}j∈U satisfy: for

any i and T ′ ⊆ OPTi,
∑

j∈T ′ qj ≤ vi(T ′).
Let T ⊆ U be a set of items satisfying: T is not sold in the auction, and for any j ∈ T , pj ≤ 1

2qj , then∑
i∈C

vi(S
0
i ∪ S1

i ) ≥ 1

4

∑
j∈T

qj .

Before proving the lemma, we briefly discuss the offline counterpart of Lemma D.1 and the connection
between them. {qj} in the lemma can be viewed as supporting prices for OPT, and T is the unsold set of
items whose prices are sufficiently smaller compared to the supporting prices. In the offline environment,
when the posted-price auction happens, no buyer has any item, i.e., S0

i = ∅. In such cases, it is easy to show
that the outcome of the auction satisfies∑

i∈C
vi(S

0
i ∪ S1

i ) ≥ 1

2

∑
j∈T

qj .

The intuition is that the unsold items provided an option for all buyers, which would guarantee each buyer
some surplus (i.e., value minus payment). The buyers, however, did not choose this option, so it must be
the case that the buyers chose something more desirable, which gave them only larger surplus. The above
lemma essentially says, even if the buyers already have some items before the auction, this bound can only
be worse by a factor of 2.

Proof of Lemma D.1. For each i ∈ C, we show

vi(S
0
i ∪ S1

i ) ≥ 1

4

∑
j∈T∩OPTi

qj .
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The lemma then follows by summing over i. By purchasing T ∩OPTi instead of S1
i , the marginal utility of

i is at least ∑
j∈T∩OPTi

(qj − pj)− vi(S0
i ) ≥

∑
j∈T∩OPTi

1

2
qj − vi(S0

i ),

which lower bounds i’s value vi(S0
i ∪ S1

i ). On the other hand, by monotonicity, i’s value is at least vi(S0
i ).

Putting the two bounds together,

vi(S
0
i ∪ S1

i ) ≥ max

 ∑
j∈T∩OPTi

1

2
qj − vi(S0

i ), vi(S
0
i )


≥ 1

2

∑
j∈T∩OPTi

1

2
qj − vi(S0

i ) +
1

2
vi(S

0
i )

=
1

4

∑
j∈T∩OPTi

qj .

On may check that given the above lemma, the entire arguments in [9] and [2] remain valid even with
free items dispensed beforehand.
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