
Planning with Participation Constraints

Hanrui Zhang1, Yu Cheng2, Vincent Conitzer1

1 Duke University
2 University of Illinois at Chicago

hrzhang@cs.duke.edu, yucheng2@uic.edu, conitzer@cs.duke.edu

Abstract

We pose and study the problem of planning in Markov de-
cision processes (MDPs), subject to participation constraints
as studied in mechanism design. In this problem, a planner
must work with a self-interested agent on a given MDP. Each
action in the MDP provides an immediate reward to the plan-
ner and a (possibly different) reward to the agent. The agent
has no control in choosing the actions, but has the option to
end the entire process at any time. The goal of the planner is
to find a policy that maximizes her cumulative reward, taking
into consideration the agent’s ability to terminate.
We give a fully polynomial-time approximation scheme for
this problem. En route, we present polynomial-time algo-
rithms for computing (exact) optimal policies for important
special cases of this problem, including when the time hori-
zon is constant, or when the MDP exhibits a “definitive de-
cisions” property. We illustrate our algorithms with two dif-
ferent game-theoretic applications: the problem of assigning
rides in ride-sharing and the problem of designing screening
policies. Our results imply efficient algorithms for computing
(approximately) optimal policies in both applications.

1 Introduction
In this paper, we consider the general problem of planning
in a Markov decision process (MDP), when the actions are
chosen by the planner, but must be taken by an agent that is
separate from the planner. The agent cannot choose the ac-
tions, but can refuse to participate at any time. To illustrate
the setting, consider the following scenario. A ride-hailing
company is designing a system to assign tasks to drivers. The
company monitors the location (or state) of each driver in
real-time via a mobile app. The company then has to choose
which ride to assign to a driver (the company’s choice of ac-
tion), with each possible assignment resulting in some value
to the company. If drivers had no incentives of their own
(e.g., were self-driving vehicles belonging to the company),
this could be modeled straightforwardly as an MDP. How-
ever, the driver also obtains rewards from the rides, which
may be different. For example, drivers generally prefer not
to take rides that will lead them to isolated areas,1 or that are

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Sometimes drivers can see the destination; sometimes they
cannot but may still suspect the destination based on the origin.

likely to involve troublesome passengers (e.g., pick-up at a
bar at closing time). The company still wants to assign these
rides, but does not want the driver to become sufficiently un-
happy that they sign off (stop participating) altogether.

It is therefore crucial to take into consideration drivers’
interests in planning task assignments, and provide enough
incentives for drivers to remain in the system even when
they receive less profitable or even unprofitable tasks. One
intuitive solution is to promise drivers who receive undesir-
able tasks high priority for receiving more profitable tasks
(or other perks) when they finish the current task. However,
implementing this solution in a way that is most beneficial
to the company can be challenging — incentivizing drivers
and maximizing profit can be in conflict with each other, and
it is not immediately clear how to balance them optimally.

In fact, the company faces a planning problem with par-
ticipation constraints: the company as the planner (hence-
forth the principal) wants to compute and commit to a policy
that maximizes her cumulative reward, subject to the con-
straint that each driver (henceforth the agent) must be moti-
vated to participate in the policy, and not just at the begin-
ning but also from any point onward.2

In addition to ride-hailing, many other real-world sce-
narios can be modeled as planning with participation con-
straints. We provide a few such examples:

• Financial services, such as automated investment plat-
forms (“robo-advisors”) or traditional mutual funds. In
the case of robo-advisors, when a customer puts in
money, the platform automatically creates and maintains
a portfolio for the customer, and trades on behalf of the
customer without asking for confirmation. The customer
can see the trades and has the option to withdraw their
money (i.e., to quit) at any time. The customer wants to
make as much money as possible in a given amount of
time, while the platform wants to keep the customer and
optimize their own objective (which partially aligns with

2Restricting the focus to policies under which no agent ever
drops out is without loss of generality by a revelation principle: if
the optimal policy involves an agent quitting at some point, since
the principal knows when the agent would quit, she can use an
equivalent policy where the agent is told that he will not have to do
anything else (e.g., take any further rides) at that point. (Through-
out the paper, we use “she” for the principal and “he” for the agent.)

the customer’s goal, but may also include other consider-
ations, such as charging an advisor fee).

• Distributed computing platforms (e.g., MQL 5, Load-
Team, or Golem Network) where an agent can sell CPU
hours. Typically, such platforms assign tasks to machines
based on how much task providers are willing to pay and
how much computing power is required. Agents are paid
an amount of money that depends on the task when a task
is finished. The agents want to make more money, while
the platform may want to finish as many tasks as possi-
ble. If the agent is receiving too little payment, they may
decide to quit the platform and make use of their CPU
hours in other ways (e.g., mining cryptocurrencies).

• Crowdsourcing marketplaces (e.g., Amazon Mechanical
Turk). Workers are paid after they finish a task (e.g., com-
pleting surveys, labeling images). Workers can quit the
platform or switch to another platform if they are not
making enough money relatively. The platform wants to
assign tasks (or a list of possible tasks to choose from) to
workers and decide how much to pay to retain the work-
ers, while optimizing their own objectives at the same
time (e.g., charging a commission fee).

In this paper, we pose and study the computational prob-
lem of finding an (approximately) optimal policy in MDPs
subject to participation constraints. We focus on the setting
where agents have no private information, because in all the
aforementioned applications, we have a very good first-order
approximation of the agent’s reward function. For example,
ride-sharing drivers want to make more money in a given
amount of time, and applicants going through a screening
process would like to pass. (See Section 1.2 for more dis-
cussion on related work that considers private information.)

1.1 Our Results
Our main result is a fully polynomial-time approximation
scheme (FPTAS) for planning with participation constraints.

• We can compute a policy satisfying participation
constraints and losing at most an additive ε > 0
in the principal’s utility compared to the optimal
policy. Moreover, we can compute such a pol-
icy in time poly(m,n, 1/ε), where m is the total
number of actions and n is the number of states.

Theorem 4 is a formal version of the above claim. We ob-
tain this FPTAS by first designing an exponential-time algo-
rithm (Algorithm 1 in Section 3.1) which computes an exact
optimal policy, and then carefully discretizing the algorithm
without violating participation constraints (Section 3.2).

When the MDP has some additional structures, our exact
algorithm (Algorithm 1) in fact runs in polynomial time.

• There is an exact algorithm (Algorithm 1) for
planning with participation constraints that runs
in time poly(mn

0), where m0 is the maximum
number of actions available at a state and n is
the number of states.

• When the time horizon is H , the exact algorithm
runs in time poly(mH

0 , n
H).

• When the MDP has a “definitive decisions”
property (see Definition 5 in Section 3.3), the ex-
act algorithm runs in time poly(m,n), where m
is total number of actions.

The formal statements of these results appear as Lemma 3
in Section 3.1 and Lemma 6 in Section 3.3.

Some applications, such as the ride-hailing model that we
gave above, are straightforward to fit into our framework.
Consequently, the above results immediately imply efficient
approximation algorithms for the ride assignment problem
in ride-hailing, as well as efficient exact algorithms when
the instance admits certain additional structures.

Our algorithmic framework in fact allows more and some-
what surprising applications. To illustrate this, we consider
the design of optimal screening policies (Section 4), where
the goal is to separate “good” candidates from “bad” ones
by observing their performance in a series of tests. The more
outcomes we observe, the more confident we are — but can-
didates may drop out if we ask them to take so many tests
that the cost of taking tests outweighs the expected utility
from passing the screening. By casting the problem as plan-
ning with participation constraints and applying our algo-
rithms, we obtain the following results (formal statements in
Theorem 8) for this problem.

• We can compute an optimal screening policy that
uses at most N tests in time poly(N). Moreover,
an approximately optimal policy losing at most
an additive ε > 0 in the principal’s utility can be
computed in time poly(1/ε).

1.2 Related Work
Our results are along the line of research on planning in
Markov decision processes (MDPs). The basic problem of
computing optimal policies in MDPs has been extensively
studied, and numerous efficient methods have been pro-
posed, e.g., (Bellman 1957; Howard 1960; Puterman and
Shin 1978). The problem studied in this paper is closely re-
lated to constrained MDPs (CMDPs) (see (Altman 1999) for
a comprehensive survey), where the goal is to find a reward-
maximizing policy subject to overall constraints, such as
that the expected cumulative cost of the policy must not ex-
ceed a predefined threshold. It is known that CMDPs can
be solved using linear programming (Altman and Spieksma
1995; Altman 1996, 1998). The key difference between our
model and CMDPs is that we consider uniform participa-
tion constraints, which must hold in all states throughout the
execution of the policy, rather than just in the initial state.
In particular, such participation constraints may require any
(nearly) optimal policy to be history-dependent, whereas
in CMDPs, one can focus on Markovian (i.e., history-
independent) policies without loss of generality (Altman
1999). More recently, reinforcement learning in CMDPs has
received increasing attention (Achiam et al. 2017; Tessler,
Mankowitz, and Mannor 2018; Cheung 2019; Le, Voloshin,
and Yue 2019; Brantley et al. 2020; Efroni, Mannor, and
Pirotta 2020; Singh, Gupta, and Shroff 2020; Ding et al.
2021). These results are quite different from ours, because
they tend to focus on exploration rather than the planning

problem itself, and the model we study in this paper is differ-
ent from CMDPs. A related model is multi-objective MDPs
(MOMDPs) (see (Roijers et al. 2013) for a comprehensive
survey), where the planner cares about multiple objectives
simultaneously. Similar to CMDPs, the work on MOMDPs
focuses on the overall cumulative reward vector, whereas the
participation constraints in our model must hold throughout
the process. Another line of research considers multi-agent
(partially observable) MDPs, where individual agents act
in a common environment based only on local information
and/or beliefs about each other (Gmytrasiewicz and Doshi
2005; Oliehoek 2012; Hoang and Low 2013). One key dif-
ference between our setting and the above is that we consider
an asymmetric environment where the principal has the ex-
clusive power to commit to a policy.

From an economic point of view, our results can be in-
terpreted as dynamic mechanism design (see (Bergemann
and Välimäki 2010; Athey and Segal 2013; Pavan, Segal,
and Toikka 2014; Pavan 2017; Bergemann and Välimäki
2019)) under only individual-rationality (i.e., participation)
constraints. Roughly speaking, in dynamic mechanism de-
sign, the principal controls which actions to play, but relies
on self-interested agents to report the current state. Since
the agents’ reward functions may not align perfectly with
the principal’s, the main challenge in dynamic mechanism
design is to encourage agents to truthfully report the state,
while maximizing the planner’s cumulative reward as much
as possible. In contrast, in our model, the principal always
observes the true state3 but does not have the power to
force participation. From a computational perspective, the
fact that the principal can observe the true state enables ef-
ficient algorithms for long-horizon environments, which are
known to be hard when the state must be reported by an
agent (Zhang and Conitzer 2021).

2 Preliminaries
In this section, we give a formal definition of the problem
of planning with participation constraints, which general-
izes planning in MDPs. Recall that in standard (finite-time)
MDPs, the state of the world evolves stochastically depend-
ing on the actions taken. Each state-action pair has a corre-
sponding reward, and the goal of the planner is to choose
actions in each state to maximize the total reward collected
before reaching a terminal state. In our model, there are two
entities, a principal (which plays a similar role as the planner
in standard MDPs) and an agent. Each state-action pair gen-
erally gives different rewards to the principal and the agent.
The principal controls which action to choose in each state,
but the agent has the power to end the entire process at any
moment. So, in order to gain more rewards, the principal has
to commit to taking actions that incentivize the agent to re-
main in the process. Below we formally state the problem.

3In our model, it is without loss of generality to have the princi-
pal choose only one action, rather than several actions for the agent
to choose from. This is because the principal knows which (if any)
action the agent would choose — since the agent has no private in-
formation — and hence the principal may as well give this action
as the only option (mindful that the agent can refuse).

States, actions, rewards, and transitions. There is a state
space S, which contains an initial state sinit and a terminal
state sterm. 4 For each state s ∈ S, there is an associated set
of actions As, where Asterm = ∅, i.e., no actions can be
played at the terminal state. The principal’s and the agent’s
rewards are captured by two reward functions rP : S×A →
R and rA : S×A → R. That is, in state s ∈ S, taking action
a ∈ As gives the principal a reward of rP (s, a) and the agent
a reward of rA(s, a).

When action a ∈ As is played in state s ∈ S , the prob-
abilistic transition to the next state is given by a distribu-
tion P (s, a) ∈ ∆(S) over the state space, where P (s, a, s′)
is the probability that the next state is s′ ∈ S. Throughout
the paper, we assume the transition operator P is acyclic,5
meaning that the probability of reaching the same state twice
is 0 no matter what actions are played. In other words, if a
state s can reach another state s′ with positive probability,
then s′ cannot reach s. Consequently, we can label the states
in topological order. That is, S = [n] 6 where sinit = 1
and sterm = n, such that all transitions go from a state with
smaller index to one with larger index.
Histories and policies. A history of length t is a sequence
of interleaved states and actions (s1, a1, s2, a2, . . . , st, at),
where si ∈ S and ai ∈ Asi for each i ∈ [t], and si <
si+1 for each i ∈ [t − 1]. Such a history corresponds to a
(partial) run of the MDP, in which the initial state is s1 and
action a1 is played, and the second state is s2 and action
a2 is played, etc. Let Ht be the set of all histories of length
t, and H0 = {∅} where ∅ denotes the empty history. Let
H =

⋃
t∈[n−1]Ht ∪H0 be the set of all histories, and let

H<s = {(s1, a1, . . . , st, at) ∈ H | st < s}
be the set of histories visiting only states before s. For a
history h = (s1, a1, . . . , st, at) and a state-action pair (s, a),
let h+ (s, a) be the history given by appending (s, a) to h:

h+ (s, a) = (s1, a1, . . . , st, at, s, a).

We say a history h′ extends another history h, if h is a prefix
of h′, with the notation h′ ⊇ h,

A policy π is a (probabilistic) mapping from history-state
pairs to distributions over actions. For any h ∈ H, s ∈ S ,
and a ∈ As, π(h, s, a) is the probability that action a will
be chosen when state s is reached with history h. Note that
we allow policies to be randomized and history-dependent,
which is necessary when we later consider participation con-
straints. We always require that π(h, s, a) = 0 if a /∈ As.

Fixing a policy π, the utility (or value) function of the
principal uπP : H× S → R can be defined recursively.

uπP (h, s) =
∑
a∈As

π(h, s, a)

(
rP (s, a)

+
∑
s′∈S

P (s, a, s′) · uπP (h+ (s, a), s′)

)
,

4We note that this is without loss of generality, i.e., equivalent
to having a distribution of initial states and multiple terminal states.

5In particular, this subsumes all finite-horizon environments.
6Throughout the paper, we use [n] to denote the set {1, . . . , n}.

and uπP (h, s) = 0 if s = sterm. Note that uπP (h, s) is
well-defined given that transitions are acyclic. In particular,
uπP (∅, sinit) is the principal’s expected cumulative reward
under policy π. 7

Similarly, the agent’s utility function uπA under policy π
can be defined as

uπA(h, s) =
∑
a∈As

π(h, s, a)

(
rA(s, a)

+
∑
s′∈S

P (s, a, s′) · uπA(h+ (s, a), s′)

)
,

and uπA(h, s) = 0 if s = sterm.
The planning problem. We take the principal’s point of
view and aim to find a policy π that maximizes the prin-
cipal’s expected total utility uπP (∅, sinit). Unlike planning
in standard MDPs, we have the additional constraint that the
policy should always incentivize the agent to remain in the
process. That is, we only consider policies π that satisfy:

uπA(h, s) ≥ 0, for all h ∈ H and s ∈ S.
This condition is commonly known as individual-rationality
(IR) (or voluntary participation, or just participation) in eco-
nomic theory, and captures the intuition that the agent should
not be worse off by participating in the process. It is worth
noting that, while our model as defined above only allows
the agent to quit before an action is chosen (i.e., ex-ante IR),
it is easy to extend the model to allow the agent to quit after
seeing the randomly selected action (i.e., ex-post IR). This
can be done by inserting a dummy state to represent “ready
to take action a in state s”.

We remark that it is sometimes better for the principal
to let the agent quit, if the cost of keeping the agent in the
system is too high. We capture this by adding a “quit” action
for the principal in each non-terminal state, which gives both
parties a reward of 0 and transitions the state of the world to
sterm. Having added this action, imposing the IR constraint
is without loss of generality: if our solution relied on the
agent at some point refusing to participate further, we could
instead just select the “quit” action for the agent at that point.

3 Computing Optimal Policies with
Participation Constraints

In this section we present our main result: an algorithm that
computes an ε-approximate optimal policy with participa-
tion constraints in time poly(n,m, 1/ε), where n = |S| is
the number of states, and m =

∑
s |As| is the total number

of actions. We first present an exact algorithm, which runs in
exponential time in the worst case, and then discretize the al-
gorithm to allow for efficient approximation. Moreover, we
show that the exact algorithm itself is strongly polynomial
time if the input MDP satisfies a “definitive decisions” prop-
erty (Definition 5).

7Because we consider finite-horizon environments, no discount
factor is required; if a discount factor γ is nevertheless desired, we
can add this into our model by introducing an additional probability
of 1− γ of immediately transitioning to the terminal state.

Algorithm 1: Algorithm for computing the Pareto
frontier of the principal/agent’s utility for all states.

Input: State space S, sets of actions {A}s, reward
functions rP and rA, transition operator P .

Output: Pareto frontier functions {fs}s for all states.
1 let fn = {(0, 0)};

/* we use {(x, f(x))} to represent f ; all these
functions are piecewise linear, so we only
store the turning points. */

2 for s = n− 1, . . . , 1 do
3 initialize fs = ∅;
4 for a ∈ As do
5 call Algorithm 2 and let

gs,a ← subcurve(s, a);
/* gs,a is the Pareto frontier after taking

action a in state s */
6 let gs,a ← {(x+ rA(s, a), y + rP (s, a)) |

(x, y) ∈ gs,a};
/* shift gs,a by adding (rA(s, a), rP (s, a))

to all its turning points */

7 let f̂s ← concenv({gs,a}a);
/* call concenv to compute the upper concave

envelope of {gs,a}a; concenv can be any
algorithm for concave envelope */

8 let fs ← f̂s ∩ {(x, y) | x ≥ 0, y ∈ R};
/* truncate f̂s at x = 0 and keep the

nonnegative part as fs */
9 return {fs}s;

/* Algorithm 3 requires additional bookkeeping
information from Algorithms 1 and 2; for ease
of presentation, we do not explicitly return it */

3.1 An Exact Algorithm
Overview of Algorithm 1. Algorithm 1 has the same high-
level structure as backward induction in standard (finite-
horizon) MDPs. Recall that states are labeled in topologi-
cal order. Without participation constraints, we can simply
process the states backward, and recursively compute the
optimal onward utility and the corresponding sub-policy in
every state. However, in our problem, the algorithm has to
keep track of the cumulative reward of the principal and the
agent, and enforce the participation constraints.

We compute the Pareto frontier of the principal’s and
the agent’s utility at every state. The Pareto frontier at s is
a function fs such that fs(u) is the principal’s maximum
achievable onward utility, subject to the agent’s onward util-
ity is exactly u (while satisfying onward participation con-
straints). We show that the functions {fs}s can be computed
efficiently in a recursive way, and consequently, the princi-
pal’s optimal overall utility can be read off from the Pareto
frontier in the initial state, and is equal to maxu≥0 fsinit(u).
Algorithmic insights. Algorithm 1 heavily exploits the fact
that feasible policies (i.e., those ensuring participation) are
closed under convex combination, and as a result, the Pareto
frontier function at each state is concave. In each state s, we

Algorithm 2: subcurve(s, a): algorithm for comput-
ing the subcurve for a state-action pair.

Input: State s ∈ S, action a ∈ As, transition
operator P , Pareto frontier functions
{fs′}s′>s for downstream states s′.

Output: Subcurve for state-action pair (s, a).
/* we represent each fs′ and the subcurves by

their turning points; let fs′ = (fs′,0, . . . , fs′,ks′)
where ks′ is the number of pieces of fs′ and
each fs′,i = (xs′,i, ys′,i) is a point in R2 */

1 let p0 ←
∑
s′>s P (s, a, s′) · fs′,0;

2 let the source point of p0 from each onward state s′
be fs′,0;

/* the source points are for bookkeeping and are
used in Algorithm 3 to execute the policy */

3 let k ←
∑
s′>s ks′ , and cs′ ← 0 for all s′ > s;

/* cs′ is the number of pieces of fs′ that we have
already used */

4 for i = 1, . . . , k do
5 let Li ← {s′ | s < s′ ≤ n, cs′ < ks′};

/* L1 is the set of states left to consider */
6 let si ← argmaxs′∈Li

(ys′,cs′+1 −
ys′,cs′)/(xs′,cs′+1 − xs′,cs′);

7 let pi ← pi−1 + P (s, a, si) · (xs′,cs′+1 −
xs′,cs′ , ys′,cs′+1 − ys′,cs′);

8 let csi ← csi + 1;
9 let the source point of pi from each onward state

s′ be fs′,cs′ ;
10 return (p0, p1, . . . , pk);

first compute, for each action a that can be taken at that state,
the Pareto frontier gs,a after taking that action, and then shift
each gs,a by the principal/agent’s reward for the state-action
pair (s, a). Then, since the policy can randomize among ac-
tions, we simply take the upper concave closure of all these
shifted curves and then truncate it to ensure participation,
which gives the Pareto frontier of this state.

A key subroutine of Algorithm 1 is Algorithm 2, which
computes the Pareto frontier function g(s, a) after taking ac-
tion a in state s — we call this the subcurve for state-action
pair (s, a). Intuitively, to evaluate this subcurve at some u,
one needs to determine the optimal way of distributing the
agent’s utility u into onward states, such that the resulting
principal’s utility is maximized. Because the Pareto frontier
functions of all onward states are concave, one can construct
the entire subcurve using a water-filling procedure, where
the construction always “follows” the Pareto frontier func-
tion that has the largest slope. In other words, if we want to
increase the principal’s utility by an infinitesimal amount af-
ter (s, a), we should increase the principal’s utility (and de-
crease the agent’s utility) in exactly one of the onward states,
namely the onward state that provides the best tradeoff.

Implementing the optimal policy. Algorithm 1 solves only
half of the problem — it computes the principal’s optimal
utility, but not the corresponding policy. In fact, it could be

the case that any optimal policy requires exponential space
to explicitly describe (even approximately), so it is impos-
sible to output an optimal policy in polynomial time. Nev-
ertheless, given the Pareto frontier functions constructed in
Algorithm 1, we present an algorithm (Algorithm 3) that can
efficiently execute an optimal policy on the fly. At a high
level, while there are exponentially many possible runs un-
der the optimal policy, to execute the policy we need to fol-
low only the one that actually happened.

More specifically, the optimal policy chooses a point p1
on the Pareto frontier of sinit to realize. We can backtrack
how Algorithm 1 achieved p1, which tells us to take an ac-
tion (say a1) and gives us a point {qs} on the Pareto frontier
of each onward state s reachable from (sinit, a1). We then
play action a1 and transition to one of these states (say s2)
at random, and we can continue to execute the point qs2 on
the Pareto frontier of s2 using the same process as above.

Correctness of Algorithms 1 and 3. Now we are ready to
prove the correctness of our algorithms.

Lemma 1. Algorithm 1 computes the Pareto frontier func-
tions for all states, i.e., for all s ∈ S, h ∈ H<s, and u ≥ 0,8

fs(u) = max{uπP (h, s) | π : uπA(h, s) = u and

∀a ∈ As,∀s′ > s,∀h′ ∈ H<s′ with

h′ ⊇ h+ (s, a), uπA(h′, s′) ≥ 0}.

Lemma 2. Let (s1 = sinit, a1, s2, a2, . . . , at−1, st = sterm)
be any (random) output sequence of Algorithm 3. Then for
each i ∈ [t− 1],

ai ∼ π∗(hi, si),

where π∗ is an optimal policy subject to participation con-
straints, and hi = (s1, a1, . . . , si−1, ai−1). In particular, π∗
guarantees that

uπ
∗

A (hi, si) = ui and uπ
∗

P (hi, si) = fsi(ui),

where ui is computed in line 1 or line 12 in Algorithm 3.

Runtime of Algorithm 1. We remark that Algorithm 1 may
take exponential time in the worst case. In fact, let |fs| be
the number of pieces in fs (recall that all fs are piece-
wise linear). Then for each s ∈ S , |fs| can be as large as
Θ
(
|As| ·

∑
s′>s |fs′ |

)
, so |fs| may grow exponentially as s

decreases. Formally, we have the following result regarding
the time complexity of Algorithm 1.

Lemma 3. Algorithm 1 runs in time n · (2m0)n, where n =
|S| is the number of states and m0 = maxs6=sterm |As| is
the maximum number of actions available in a single state.
Moreover, suppose the state space can be partitioned into
H sets {S1, . . . ,SH}, such that for any two states s ∈ Si
and s′ ∈ Sj , for all a ∈ As, P (s, a, s′) > 0 only if j =
i + 1. Then Algorithm 1 runs in time O((m0n)H log n). In
particular, Algorithm 1 is polynomial-time if H is constant.

8Note that the equation of fs(u) implies that the policy satisfies
IR constraints at histories it would never reach; this is without loss
of generality as the “quit” action could always be chosen.

Algorithm 3: Algorithm for executing the optimal
policy on the fly (i.e., choosing actions on the fly)

Input: Problem instance (S, {A}s, rP , rA, P),
Pareto frontier functions {fs}s and other
auxiliary variables computed by Algorithm 1.

Output: A random trajectory
(s1 = sinit, a1, . . . , at−1, st = sterm) of the
optimal policy subject to participation
constraints.

/* we require the following bookkeeping
information: the source points (lines 2 and 9 of
Algorithm 2), the Pareto frontier functions
before truncation {f̂s}s (line 7 of Algorithm 1),
and “which turning points come from which
subcurve” (lines 7 and 8 of Algorithm 1) */

1 let i← 1, u1 ← argmaxu′ fsinit(u
′), s1 ← sinit;

2 while si 6= sterm do
3 let p−i , p

+
i ∈ f̂si and αi ∈ [0, 1] be such that

(ui, f̂si(ui)) = αi · p−i + (1− αi) · p+i ;
/* we view fsi and f̂si interchangeably as

mappings and sets of turning points; note
that p−i may have a negative x-coordinate,
but pi defined below always has a
nonnegative x-coordinate, and is therefore
on the curve of fsi+1

*/
4 let a−i , a

+
i ∈ Ai be such that p−i and p+i come

from the (shifted) subcurves for (si, a
−
i) and

(si, a
+
i) respectively;

5 let randi be a uniformly random real number
between 0 and 1;

6 if randi ≤ αi then
7 let ai ← a−i ,

pi ← p−i − (rA(si, ai), rP (si, ai));
8 else
9 let ai ← a+i ,

pi ← p+i − (rA(si, ai), rP (si, ai));
10 play action ai and transition to next state

si+1 ∼ P (si, ai);
11 let qi = (xi, yi) be the source point of pi from

onward state si+1 in the subcurve (before
shifting) for (si, ai);

12 let ui+1 ← xi, i← i+ 1;
13 let t← i;
14 return (s1 = sinit, a1, . . . , st−1, at−1, st = sterm);

3.2 Achieving Efficiency by Approximation
Below we show how to make Algorithm 1 polynomial-time
by sacrificing an arbitrarily small additive error ε. The idea is
simple: since each Pareto frontier function is concave, when
the number of pieces in each function is large, there must be
many pieces that are essentially the same and therefore can
be merged at little cost.

To make this concrete, instead of the exact Pareto fron-
tier curves, we maintain their intersections with equally

spaced horizontal lines, and use the upper concave closures
of these intersections as proxy curves to approximate the
actual Pareto frontier functions. Since the Pareto frontier
curves are concave, each curve can intersect each horizon-
tal line at most twice — once in the increasing phase, and
once in the decreasing phase. Moreover, the error from this
approximation is uniformly upper bounded by the distance
between two neighboring horizontal lines. Formally, for any
desired error ε > 0, we insert the following operation after
line 9 of Algorithm 1:

let fs ← concenv
(
fs ∩ {(x, y) | x ∈ R, y ∈

{−n,−n+ ε
n ,−n+ 2ε

n , . . . , n−
2ε
n , n−

ε
n , n}}

)
;

The approximation guarantee and the runtime of the mod-
ified algorithms are stated in the following theorem.

Theorem 4. Suppose the principal’s reward function is
bounded, i.e., for all s ∈ S and a ∈ As,

−1 ≤ rP (s, a) ≤ 1.

Then, the modified Algorithm 1 with parameter ε > 0 to-
gether with Algorithm 3 implicitly computes a policy πε
guaranteeing participation, which satisfies

uπε

P (∅, sinit) ≥ uπ
∗

P (∅, sinit)− ε,

where π∗ is the optimal policy guaranteeing participation.
Moreover, the modified Algorithm 1 with parameter ε > 0
takes time O((mn3 log n)/ε).

3.3 Achieving Efficiency with Definitive Decisions
Although Algorithm 1 can take exponential time in general,
we show that it is in fact strongly polynomial-time for a spe-
cial case of the problem, where all decisions are definitive.

Formally, we consider the model with the following re-
striction.

Definition 5 (Definitive decisions). We say an MDP has
the “definitive decisions” property if, for each state s ∈ S ,
the set of available actions As at s includes at most one
“decide-later” action, for which there are no restrictions on
its transition probabilities; all other actions in As are “de-
cision” actions, which immediately terminate the process by
taking the state deterministically to sterm.

Notice that there are no restrictions on the rewards, so
each action can induce arbitrary rewards for the princi-
pal and the agent. MDPs with definitive decisions property
can capture many real-world scenarios, such as candidate
screening and training programs (see Section 4).

We can show that our exact algorithm (Algorithm 1) runs
in polynomial time if the input MDP satisfies the definitive
decisions property.

Lemma 6. In the case of definitive decisions, Algorithm 1
computes the (exact) Pareto frontier functions for all states
in time O(m2 log n).

4 Application: Screening Policy Design
In this section, we illustrate the wide applicability of our re-
sults by examining a natural application scenario: the design
of screening policies. The setting we consider is the follow-
ing. Suppose we run a crowdsourcing task that requires very
specific qualifications, so we would like all crowd workers
to be screened before entering the pool. Whether a worker
actually qualifies can only be observed during the job (even
workers themselves do not know beforehand), but we know
that workers who qualify tend to perform better in certain
simple online tests. In order to estimate workers’ qualifica-
tions, we provide these tests to all prospective workers, so
they can potentially take as many as they wish.

Ideally, we would like to admit only workers who take a
large number of tests and perform well on average, because
in that case we are very confident that they qualify. How-
ever, if the time cost of repeatedly taking tests outweighs the
benefit of getting the job, then workers will simply not try at
all. Even if a worker starts trying, he may quickly give up af-
ter seeing a few negative results, deciding that his chance of
eventually qualifying does not justify the time cost of keep
trying. Taking this into consideration, our goal is to design a
policy of admission that in expectation maximizes our gain
(i.e., the amount of useful job done minus the total payment)
by encouraging workers to take more tests.
The setup. Formally, there are two types of workers: “good”
and “bad”. Before taking tests, neither we nor the worker
know whether the worker is good or bad, but there are com-
monly known prior probabilities for both types, pg and pb.
A test has two possible results: pass (P) and fail (F). A good
worker passes each test independently with probability qg ,
and a bad worker passes with probability qb < qg . Without
loss of generality, suppose our utility for accepting a good
agent is ug > 0, and that for accepting a bad one is ub < 0;
each worker receives utility 1 for being accepted, and−c for
the time cost of taking a test.

A policy maps each sequence of test outcomes — e.g.,
“PFPPF” — to a distribution over three possible actions: ac-
cept, reject, and decide later. Our goal is to find an optimal
policy, taking into consideration that workers may drop out
at any moment if their onward expected utility is negative.
We remark that our formulation and algorithms can in fact
handle much more general settings, but we choose to present
this specific application, because it admits nice structures
and can demonstrate several intriguing aspects of our results.

4.1 Screening Policy Design as Planning with
Participation Constraints

We show how to cast the screening problem as planning with
participation constraints. First observe that at any moment in
the above process, our belief on the worker’s type (i.e., the
posterior probability that a worker is good) only depends on
the sequence of test outcomes so far. In fact, this probability
depends only on the numbers of Ps and Fs that a worker
gets. Therefore, without loss of generality, we can consider
an MDP where the states are S = {(p, f) | p, f ∈ N} ∪
{sterm} = N2∪{sterm}, where sinit = (0, 0). The posterior
probability of being good in a state (p, f) is given by:

Pr[good | (p, f)] =
pg · qpg(1− qg)f

pg · qpg(1− qg)f + pb · qpb (1− qb)f
.

The set of actions associated with each state s has 3 el-
ements: As = {accept, reject, decide-later}. Among these
actions, accept and reject are decision actions, in the sense
that they terminate the process immediately. The rewards
they induce for the agent and the principal are: (1,Pr[good |
(p, f)] · (ug − ub) + ub) for accept, and (0, 0) for reject.
The decide-later action induces rewards (−c, 0) and transi-
tion probabilities:

Pr[(p+ 1, f) | (p, f)] = Pr[good | (p, f)] · qg
+ (1− Pr[good | (p, f)]) · qb,

Pr[(p, f + 1) | (p, f)] = 1− Pr[(p+ 1, f) | (p, f)].

Computing optimal policies. With the above formulation,
we can apply our algorithms to find optimal policies. First
consider the case where there is an upper limit N on the
number of tests each worker can take. In such cases, the
state space becomes S = {(p, f) | p + f ≤ N} ∪ {sterm},
where |S| = O(N2). Since the formulation has definitive
decisions, we can directly apply Algorithm 1 to compute the
optimal policy in time O(N4 logN).

Even in the idealized setting where the number of tests a
worker can take is arbitrarily large (which is possible be-
cause workers may not consider sunk cost when making
decisions), we can still approximate the optimal policy to
arbitrary precision. More specifically, the following lemma
states that there exists a policy that uses at most N tests and
achieves a principal’s utility at most O(1/N) worse than the
optimal policy.
Lemma 7. Let OPT be the principal’s optimal utility in
screening policy design with no limit on the number of tests.
For any N , there is a policy guaranteeing participation
which plays reject for all (p, f) where p + f > N , and
achieves expected utility OPT−O(1/N) for the principal.

Combining Lemma 6 with Lemma 7, we can compute an
ε-approximately optimal policy in time O(log(1/ε)/ε8) for
any ε > 0. To summarize, we have the following theorem.
Theorem 8. We can compute an optimal screening policy
in time O(N4 logN) when the maximum number of tests
a worker is willing to take is N . Moreover, when workers
may take arbitrarily many tests, we can compute an approx-
imately optimal policy up to any additive error ε > 0 in time
O(log(1/ε)/ε8).

5 Future Directions
We leave a number of open questions as interesting avenues
for future work: Is there a poly-time algorithm (or a hard-
ness result) for exactly solving MDP with participation con-
straints? What if the policy must be deterministic? What ad-
ditional applications can fit in the MDP model in this paper?

Another future direction is the case with incomplete in-
formation, e.g., when the agent’s reward function is only ap-
proximately known. One potential solution is to run a robust
version of our algorithm that allows some slack in the IR
constraints, where the slack corresponds to a confidence in-
terval for our estimate of the agent’s reward function.

6 Acknowledgments
Hanrui Zhang and Vincent Conitzer are supported by NSF
award IIS-1814056. Yu Cheng is supported in part by NSF
award CCF-2122628. The authors thank anonymous review-
ers for their helpful feedback.

References
Achiam, J.; Held, D.; Tamar, A.; and Abbeel, P. 2017. Con-
strained policy optimization. In International Conference on
Machine Learning, 22–31. PMLR.
Altman, E. 1996. Constrained Markov decision processes
with total cost criteria: Occupation measures and primal LP.
Mathematical methods of operations research, 43(1): 45–72.
Altman, E. 1998. Constrained Markov decision processes
with total cost criteria: Lagrangian approach and dual lin-
ear program. Mathematical methods of operations research,
48(3): 387–417.
Altman, E. 1999. Constrained Markov decision processes,
volume 7. CRC Press.
Altman, E.; and Spieksma, F. 1995. The linear program ap-
proach in multi-chain Markov decision processes revisited.
Zeitschrift für Operations Research, 42(2): 169–188.
Athey, S.; and Segal, I. 2013. An efficient dynamic mecha-
nism. Econometrica, 81(6): 2463–2485.
Bellman, R. 1957. A Markovian decision process. Journal
of mathematics and mechanics, 6(5): 679–684.
Bergemann, D.; and Välimäki, J. 2010. The dynamic pivot
mechanism. Econometrica, 78(2): 771–789.
Bergemann, D.; and Välimäki, J. 2019. Dynamic mecha-
nism design: An introduction. Journal of Economic Litera-
ture, 57(2): 235–74.
Brantley, K.; Dudik, M.; Lykouris, T.; Miryoosefi, S.; Sim-
chowitz, M.; Slivkins, A.; and Sun, W. 2020. Con-
strained episodic reinforcement learning in concave-convex
and knapsack settings. arXiv preprint arXiv:2006.05051.
Cheung, W. C. 2019. Regret minimization for reinforce-
ment learning with vectorial feedback and complex objec-
tives. Advances in Neural Information Processing Systems,
32: 726–736.
Ding, D.; Wei, X.; Yang, Z.; Wang, Z.; and Jovanovic, M.
2021. Provably efficient safe exploration via primal-dual
policy optimization. In International Conference on Artifi-
cial Intelligence and Statistics, 3304–3312. PMLR.
Efroni, Y.; Mannor, S.; and Pirotta, M. 2020. Exploration-
exploitation in constrained MDPs. arXiv preprint
arXiv:2003.02189.
Gmytrasiewicz, P. J.; and Doshi, P. 2005. A framework for
sequential planning in multi-agent settings. Journal of Arti-
ficial Intelligence Research, 24: 49–79.
Hoang, T. N.; and Low, K. H. 2013. Interactive POMDP
Lite: Towards practical planning to predict and exploit inten-
tions for interacting with self-interested agents. In Twenty-
Third International Joint Conference on Artificial Intelli-
gence.

Howard, R. A. 1960. Dynamic programming and Markov
processes.
Le, H.; Voloshin, C.; and Yue, Y. 2019. Batch policy learning
under constraints. In International Conference on Machine
Learning, 3703–3712. PMLR.
Oliehoek, F. A. 2012. Decentralized pomdps. In Reinforce-
ment Learning, 471–503. Springer.
Pavan, A. 2017. Dynamic mechanism design: Robustness
and endogenous types. In Advances in Economics and
Econometrics: Eleventh World Congress, 1–62.
Pavan, A.; Segal, I.; and Toikka, J. 2014. Dynamic mecha-
nism design: A myersonian approach. Econometrica, 82(2):
601–653.
Puterman, M. L.; and Shin, M. C. 1978. Modified policy
iteration algorithms for discounted Markov decision prob-
lems. Management Science, 24(11): 1127–1137.
Roijers, D. M.; Vamplew, P.; Whiteson, S.; and Dazeley,
R. 2013. A survey of multi-objective sequential decision-
making. Journal of Artificial Intelligence Research, 48: 67–
113.
Singh, R.; Gupta, A.; and Shroff, N. B. 2020. Learning in
Markov decision processes under constraints. arXiv preprint
arXiv:2002.12435.
Tessler, C.; Mankowitz, D. J.; and Mannor, S. 2018. Re-
ward constrained policy optimization. arXiv preprint
arXiv:1805.11074.
Zhang, H.; and Conitzer, V. 2021. Automated Dynamic
Mechanism Design. arXiv preprint arXiv:2105.06008.

