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Abstract. We study combinatorial auctions with n agents and m items,
where the goal is to allocate the items to the agents such that the so-
cial welfare is maximized. We present a universally truthful mechanism
with polynomially many queries for combinatorial auctions. Our mecha-
nism and analysis work adaptively for all classes of valuation functions,
guaranteeing O(min(d, /m))-approximation (where O hides a polyloga-
rithmic factor in m) of the optimal social welfare, where d is the degree
of complementarity of the valuation functions. To our knowledge, this
is the first mechanism that achieves an approximation guarantee better
than £2(y/m), when the valuations exhibit any kind of complementarity.

Keywords: Truthful combinatorial auctions, Approximate subadditivity, Point-
wise approximation

1 Introduction

The field of algorithmic mechanism design studies protocols for computing an
outcome to optimize a certain social objective (e.g., the social welfare), when in-
puts are reported by strategic agents. The main challenge in algorithmic mech-
anism design is twofold: algorithmically, the mechanism has to deal with the
computational hardness of the problem; strategically, the mechanism has to take
into account the incentives of the agents, which often do not align with the
interests of the designer. One popular scheme in the field is to design truthful
mechanisms, where the dominant strategy of all bidders are to report their true
preferences. Restricted to truthful mechanisms, one no longer needs to worry
about complex strategic behavior, and can therefore focus on the algorithmic
properties of the mechanism.

In this paper, we consider a central problem in algorithmic mechanism design
— designing truthful mechanisms for combinatorial auctions. In a combinatorial
auction, there are n agents and m items. Each agent i has a wvaluation func-
tion v;, that maps each subset S of the items to her value of the subset v;(.5).
The goal is to find an allocation of all items, (Aq,...,A,), such that the total
value (i.e., the social welfare) of the agents, >, vi(4;), is maximized. It is
standard in combinatorial auctions to assume that all valuations are monotone?

1 A valuation v is monotone, if for any S C T C [m], v(S) < v(T).
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and normalized®. Previous research also studies restricted classes of valuations,
e.g., submodular?, fractionally subadditive (XOS)*, and subadditive® valuations.
It is known that all submodular valuations are fractionally subadditive, and all
fractionally subadditive valuations are subadditive.

Since the size of a valuation function can be exponentially large in m, it is
often impossible to use the entire functions as the input. Instead, two standard
kinds of queries are allowed: (1) value queries, which, given an agent ¢ and a set
S, return the value of S to agent 4, v;(S); (2) demand queries, which, given an
agent 7 and prices {p;}jc[m], return a utility-maximizing set (i.e., a demand set)
of i under the given prices. That is, the query returns a set S that maximizes
vi(S) = X jes Ps-

Combinatorial auctions become relatively easy if we remove either one of the
two aspects of the difficulty. Ignoring incentive issues, efficient approximation
algorithms exist for the welfare maximization problem. Vondrak gives a %
approximation for submodular valuations, using only value queries [26], which
is shown tight by Mirrokni et al. [23]. When demand queries are allowed, Feige
and Vondrak give an upper bound of —%5 — 10~° for submodular valuations [17],
where a lower bound of ;2% is known [10]. Feige gives a —2;-approximation
for XOS valuations and a 2-approximation for subadditive valuations using both
queries [14]. None of these algorithms are truthful. On the other hand, the VCG
mechanism is truthful and guarantees the optimal welfare. Computing the VCG
outcome and payments, however, is usually algorithmically hard. In particular,
approximation usually does not help in implementing the mechanism because of
incentive issues.

Taking into account both computational and strategic issues, there are signif-
icant gaps between known upper and lower bounds. Under the most restrictive
assumptions, for submodular valuations, Dobzinski et al. [8] give a deterministic
O(y/m)-approximation that requires only value queries, which is tight both in-
formation theoretically [6] and complexity theoretically [10]. Allowing random-
ization and demand queries, a series of work improves the upper bound from
O(log® m) for XOS valuations [9], to O(logm loglogm) for subadditive valua-
tions [5], to O(logm) for XOS valuations [21], to O(y/logm) for XOS valuations
[7], and finally to O((loglogm)?) for XOS valuations [2]. For general valuations,
O(y/m)-approximation randomized mechanisms using both kinds of queries are
known [9, 5], accompanied by a matching £2(m!/2~¢) communication complexity
lower bound by Nisan [24].

All of the above mechanisms are universally truthful. That is, fixing the ran-
domness of the mechanism, no agent has incentive to misreport her valuation. We
focus our attention on universally truthful mechanisms, as opposed to truthful
in expectation ones, since if the mechanism proceeds in stages, as agents observe

2 A valuation v is normalized, if v() = 0.

3 A valuation v is submodular, if for any S, T C [m], v(S) +v(T) > v(SUT) +v(SNT).

% A valuation v is fractionally subadditive, if for any S, {73}, and {a;}, v(S) <
>~ a;v(T;), whenever the following holds: for each j € S, 37, .oy @i > 1.

5 A valuation v is subadditive, if for any S, T C [m], v(S) + v(T) > v(SUT).
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partial realization of the randomness, truthfulness in expectation may not be
able to prevent them from lying. Even if agents do not observe the realization
of the randomness, their attitude toward risk may still lead them to misreport.

Despite all the upper bounds for various restricted classes of valuations, little
is known for classes beyond subadditivity. Subadditive valuations are considered
reasonably general, but they can only model items as substitutes to each other —
that is, possessing some items can never make other items more desirable. While
focusing on subadditive valuations usually allows better approximation ratios,
real world valuations often do involve complementarity. For example, a TV set
seems more valuable when one already has a sofa, because otherwise she might
have to watch on her feet. On the other hand, the amount of complementarity is
usually limited, in the sense that a sofa and a TV set complement each other, but
neither of them would affect the value of a car, a dishwasher, or anything out of
the living room. In other words, possible sets of items that complement each other
are likely not too large. Such valuations with limited complementarity, while
being obviously more general than the subadditive class, still seem intuitively
easier to handle than arbitrary monotone valuations. So, a natural question
arises:

Beyond subadditivity, can we do better than 2(\/m), when agents have
valuations exhibiting limited complementarity?

1.1 Owur Results

We give a positive answer to the question above. Our main contribution is
twofold:

1. Going beyond subadditive valuations, we establish welfare guarantees that
degrade smoothly as the degree of complementarity of the valuations grows.
We prove fine-grained upper bounds roughly proportional to the degree of
complementarity, which, when the degree is small, improve substantially over
the O(y/m) bound for general valuations. To our knowledge, no such results
were known before.

2. We provide unified design and analysis that work adaptively for all classes of
valuations, guaranteeing approximation ratios that nearly match the state-
of-the-art for the respective class.

In order to derive parametrized welfare guarantees for valuations beyond the
complement-free class, we need to be able to measure how much complementar-
ity the valuations exhibit (i.e., we need a measure of complementarity). While
several measures have been proposed and referred to in various applications
(e.g., the supermodular degree hierarchy [16] and the Maximum-over-Positive-
Hypergraphs hierarchy [15]), it has been observed that different tasks often re-
quire different measures to capture the transition of hardness from restricted
to general valuations (see, e.g., [12]). For our problem, the superadditive width
hierarchy proposed by Chen et al. [3] seems the best fit. The measure builds on
the concept of superadditive sets:
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Definition 1 (Superadditive Sets [3]). Let v(S|T) = v(SUT) —v(T) be the
marginal of S given T. Given a normalized monotone valuation function v over
a ground set [m], a set T C [m] is superadditive w.r.t. v if

35 C [m]\ T such that: v(S|T) > 7{1}%}%1}(5@').

In words, a set T is superadditive, if it enables some set S with a larger marginal
than any of its proper subsets does. Based on the concept of superadditive sets,
Chen et al. define a measure of complementarity:

Definition 2 (Superadditive Widths [3]). The superadditive width of a val-
uation function v is defined to be

SAW (v) = max{|T| | T is a superadditive set w.r.t. v}.

The definition essentially says, that the degree of complementarity of a valuation
is proportional to the size of the largest superadditive set with respect to the
valuation.

It is known that for any monotone valuation function v over 2™, 0 <
SAW (v) < m — 1, and SAW (v) = 0 iff v is subadditive [3]. In other words, valu-
ations can be categorized, according to their superadditive width, into m nested
layers, where the lowest layer (layer 0) contains exactly the class of subadditive
valuations, and the highest layer (layer m — 1) contains all monotone valuation
functions. We denote the d-th layer, containing valuations with superadditive
width at most d, by SAW-d.

The following theorem summarizes our results:

Theorem 1 (Informal). There is an efficient universally truthful mechanism
which guarantees 6(min(d, V/m))-approzimation® of the optimal welfare, where
m is the number of items, and d = max;e[,,) SAW (v;) is the mazimum superad-
ditive width of agents’ valuations.

Submodular/XOS|  Subadditive SAW-d General
Mechanism 1 of [5] O(y/m) O(y/m) O(y/m) O(y/m)
Mechanism 2 of [5]|O(log m loglog m)|O(log m loglogm) ? ?
2] O((loglog m)?®) ? ? ?
This paper O(logm) O(log” m) O(dlog”m)|O(v/mlogm)

Table 1. Comparison of approximation ratios of several mechanisms.

The mechanism and analysis we present enjoy generic applicability — they
require no parameters and automatically work for all kinds of valuations. Beside
our result for limited-complementarity valuations, for complement-free valua-
tions, we recover the polylog approximation ratios, and for general valuations,

6 O hides a polylog m factor.
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we match the £2(y/m) lower bound up to a O(v/logm) factor. This adaptivity is
particularly desirable when it is unrealistic to know beforehand to which class
the valuations belong”. We also note that our mechanism is considerably sim-
plified compared to previously proposed mechanisms — we intend to keep the
mechanism as simple as possible to demonstrate the power of the underlying
ideas, potentially compromising a minor factor in the approximation ratio. On
the other hand, our analysis does shed light on the potential space for improve-
ment within the framework we present, possibly by incorporating ideas from [5,
2]. For further related work, see Appendix A.

1.2 Organization and Technical Overview

We present our mechanism in Section 2, and then proceed to establishing ap-
proximation guarantees for different classes of valuations in later sections. The
overall idea is to build a framework using the strongest assumptions under which
the argument remains illustrative, and then generalize gradually by adapting the
framework.

We begin our investigation with constraint homogeneous (CH) valuations
(defined in Definition 3), which is arguably the simplest class of valuations ex-
hibiting complementarity. The class was originally introduced by Devanur et
al. [4] and extended by Feldman et al. [18] to study the PoA of simple auc-
tions. Roughly speaking, the CH class contains valuations that are additive over
small disjoint bundles, where each bundle’s value is proportional to its size. We
show in Section 3 that our mechanism guarantees O(d)-approximation for CH
valuations with maximum bundle size d. More specifically, we first show that
given complete information about agents’ valuations, there exist prices, such
that if we post these prices on the items, order agents arbitrarily, and let them
purchase their demand sets, the resulting allocation is a O(d)-approximation of
the optimal welfare. We prove this guarantee using a standard argument that
decomposes the welfare into two parts: the total payment, and the total buyer
surplus. The intuition is that, if we post the right prices, then when most items
are sold, the payment must be high enough. Otherwise, since the unsold items
are available to every agent as an option, the total buyer surplus must be high
enough. The welfare bound follows since both terms are nonnegative. We then
argue that without knowing agents’ valuations, we can somehow guess a price,
such that if we post that price on every item, the expected welfare is still rea-
sonably high. The technique of “guessing a price” has also been shown useful in
[9,5].

We further observe that for certain truthful mechanisms, pointwise approz-
imation between classes of valuations (as defined in Definition 4) in a sense

" One may argue that running the state-of-the-art mechanism for each class of valu-
ations with constant probability achieves the best approximation guarantee for all
classes simultaneously. The point we try to make here is, we show how one can
achieve this adaptivity with coherent design and analysis, which arguably provides
more insight into the problem, and is more likely to inspire future research on the
topic.
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preserves welfare guarantees. The notion of pointwise approximation was ex-
plicitly defined by Devanur et al. in [4], where they show such approximation
approximately preserves PoA bounds. Informally, v is approximated by v’ at set
S, if (1) v’ is always no larger than v at any subset of S, and (2) v’ is not too
much smaller than v at S. In Section 4, based on this observation, we provide a
way to translate these approximation relationships into welfare guarantees, by
proving the following lemma:

Lemma 1 (Informal). There is an efficient universally truthful mechanism
which guarantees 5(d)—approxz’mation of the optimal welfare, when agents have
valuations approzimated by disjoint bundle (DB) valuations (as defined in Defi-
nition §) with mazimum bundle size d.

The class of DB valuations is similar to CH, except that each bundle can have
an arbitrary value. We first argue the lemma for CH valuations, and then ex-
tend to DB valuations by assigning a dummy agent to every bundle in a DB
valuation. The proof of the lemma builds on the observation, that if we pretend
that the agents have CH valuations that approximate the actual ones at some
optimal allocation, we can borrow the argument for CH valuations with local
modifications. In particular, since the welfare of the optimal allocation under
the dummy valuations is not too much smaller than the actual optimal welfare,
we can use the dummy welfare as the benchmark without significant loss.

The extension lemma above essentially says, in order to establish welfare
guarantee for a particular class of valuations, one only needs to show approx-
imability of the class by DB valuations. Given the extension lemma, we plug in
previously known approximation results for XOS, subadditive, and SAW-d val-
uations by DB valuations, which immediately yields approximation guarantees
for the respective classes of valuations.

Finally, in Section 5, we show that for general valuations, we are able to nearly
recover the optimal O(y/m) approximation ratio. We take a similar but slightly
different approach. We argue that if the agents’ shares in the optimal allocation
are roughly equally distributed, then we can ignore agents who receive too many
items. The intuition is, since agents receive disjoint sets of items, the number of
agents who receive many items is not too large. Also, since the optimal welfare is
equally distributed, a small number of agents cannot share too large a fraction of
the welfare, and can therefore be removed without hurting the welfare too much.
We then use the optimal allocation projected to agents who receive few items as
the benchmark. We observe, that the valuation of each agent is approximated at
the set she receives, by a CH valuation with reasonably small maximum bundle
size. A similar argument to the one we use to prove the extension lemma gives
the desired approximation guarantee.

2 A Generic Mechanism

In this section, we present our generic mechanism for truthful combinatorial auc-
tions, and state its approximation guarantees for different classes of valuations.
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Notation. Throughout the paper we use [n] and [m] to denote the sets of agents
and items, respectively. W.l.o.g. we assume m = 2P for some integer p. In general
we use ¢ as the index of an agent, and j the index of an item.

The mechanism, as well as the frameworks presented in [9, 5], uses two widely
applied subroutines:

— A (grand-bundle) second price auction, where each agent bids on the grand
bundle of all items. The agent with the highest bid wins, receives all items,
and pays the second highest bid.

— A fized-price auction with price p, where all agents are approached in some
arbitrary order. Each agent, when being asked, can choose to purchase any
subset of the items available at the time, paying p for each item she purchases.
Any item purchased by some agent becomes unavailable immediately.

A generic mechanism.

1. With probability %, run a second price auction on the grand bundle, give all
items to the winner, charge her the second highest bid, and terminate.

2. Partition all agents into two sets: STAT and FIXED. Each bidder is as-
signed independently, with probability % to STAT, and with probability %
to FIXED.

3. For each agent i € STAT, query v;([m]). Let po = max;esrar vi([m]).

4. Draw p uniformly at random from

p— { Po Po Po

2 2
32m27W7“',?7p072p03"'78m p0716m pO} .

Run a fixed-price auction for agents in FIXED with price p, give any pur-

chased item to the agent who purchased it, collect the corresponding pay-
ments, and terminate.

It is easy to check that the above mechanism is universally truthful. If a
grand-bundle second price auction happens, truthfulness follows from that of
second price auctions. Otherwise, for an agent in STAT, since she will not receive
any item anyway, there is no incentive to lie.® For an agent i in FIXED, when
being asked, her dominant strategy is to purchase her demand set (i.e. a set S
that maximizes v;(S) — p - |S|) according to her actual valuation. We prove in
the following sections that:

Theorem 2 (Main Theorem). The generic mechanism is universally truth-
ful, makes exactly one wvalue or demand query to each agent, and returns a
O(min(dlog® m, v/mlogm))-approzimately optimal allocation of all items in ex-
pectation, where d = max;c(,) SAW (v;). When agents have submodular or XOS
valuations, the approzimation ratio improves to O(logm).

8 As suggested by an anonymous reviewer, a slight modification gives all agents strict
incentives to report truthfully: partiton agents into two sets (STAT and FIXED)
uniformly at random, and run a second-price auction on the grand bundle for agents
in STAT. Then with probability 1/2, allocate the grand bundle to the highest bidder
in the second-price auction, and with probability 1/2, let po be the highest bid, and
proceed to Step 4 (the fixed-price auction) of the original mechanism.
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It may appear that a tighter analysis should give a bound of 5(\/&), which
becomes O(1) for complement-free agents (when d = 0) and O(y/m) for general
monotone agents (when d = m — 1). However, we show that the above bound is
in fact almost tight for our protocol, or any protocol within the same framework.
Namely,

Proposition 1. There ezist 2m/(d+1) agents with SAW-d valuations such that
the generic mechanism yields a 2(min{d, m/d})-approzimately optimal alloca-
tion.

We postpone the proof of the above proposition to Appendix B.

3  Warmup: Constraint Homogeneous Valuations

As a warmup, we first prove an approximation guarantee of the generic frame-
work when agents are interested in only disjoint bundles of items. The proof will
also be the backbone of the limited-complementarity and general valuation cases
to be discussed later. Formally, we are interested in agents with the following
class of valuations:

Definition 3 (d-Constraint Homogeneous Valuations [18]). A valuation
v is d-constraint homogeneous (d-CH) if there exists a value p (the price-per-
item), and disjoint sets Q1, ..., Qe, each of size at most d, so that v(Q) = p-|Qk|
for every Qy, and the value of every set S C [m] is the sum of values of contained
Qi ’S, i.e.,

v(S) = Z v(Qr) =p Z |Qkl=p-|{j:3k s.t. j € Qx C S}

QrCS QrCS

We prove that the generic mechanism gives a O(dlogm) approximation of
the optimal welfare when agents have d-CH valuations. We proceed by two cases:
when there is an agent whose share in the optimal allocation is large, and when
there is no such agent. The former case is directly handled by the grand-bundle
second price auction, while the second case requires more effort. All missing
proofs in this section are postponed to Appendix C.

Notation. Let OPT = (OPTy,...,OPT,) be an optimal allocation, where OPT;
is the set of items that agent i receives. Let v(OPT) = ) . v;(OPT;) be the
optimal welfare.

3.1 The Easy Case: When Heavy Agents Exist

First note that:

Lemma 2. For any t > 1, if for some agent i, v;(OPT;) 2( U(O%)T)
v(OPT

grand-bundle second price auction guarantees welfare at least ———.

, then a
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Therefore, if there is an agent ¢ whose share in the optimal allocation is
at least v;(OPT;) > v](ooﬂ with probability % a grand-bundle second price

gm
auctions happens, in which case the welfare is at least vaOgPWT)_

v(OPT)
2logm °

The expected

welfare is hence at least

3.2 A Thought Experiment: Posted Prices Given Complete
Information

Before proceeding to the hard case, we first consider a scenario where the valu-
ations of all agents are known. We demonstrate that in such a case, there exist
prices, using which a posted-price auction achieves a d-approximation of the op-
timal welfare when agents have d-CH valuations. The result does not directly
imply a welfare guarantee of our mechanism. Nevertheless, the argument is in-
strumental for later discussion. We also note that the result in this subsection
for the complete information case is not a novel contribution of this paper: for
example, a similar statement appears in [11]. We present the entire argument
here mainly to provide intuition about the hard case and to be self-contained.

Posted-price auctions. A posted price auction is similar to a fixed price auction,
except that the prices for different items can be different. A price is assigned to
each item before the auction begins. During the auction, agents are approached
in some arbitrary order. Upon being asked, each agent can purchase any subset
of the items available, and pay the total prices assigned to these items.

We claim that:

Proposition 2. For agents with d-CH valuations, there exists prices {q;};, such

that a posted-price auction with prices {q;}; yields an allocation with welfare at
v(OPT)

least =5,

3.3 The Hard Case: When No Heavy Agents Exist

Now we focus on the case where no agent has a share larger than %. In

such a case, we completely ignore the contribution to the welfare by the second
price auction, and analyze solely the contribution of the fixed price auction.

Ideally we would like to run the posted-price auction discussed in the preced-
ing subsection. However, there are two obstacles preventing us from implement-
ing the auction: (1) the valuations of agents are unknown, and (2) computing an
optimal allocation is computationally prohibiting. The latter issue can be solved
in some sense, by running an approximation algorithm (e.g. [15]), presumably
compromising the approximation ratio. On the other hand, there seems to be no
easy way around the first issue.

To overcome these difficulties, instead of posting the prices constructed in
Proposition 2, our mechanism (1) estimates the interval in which the posted-
prices lie, by querying agents in STAT, (2) guesses an appropriate price for
agents in FIXED from the estimated interval, and (3) runs a fixed-price auction
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for agents in FIXED with the price guessed. We show that the expected welfare
resulting from such a procedure is not too much worse than the posted-price
outcome.

The first step is to show that with high probability, the optimal welfare is
relatively equally distributed into STAT and FIXED, so (1) a good approxima-
tion restricted to agents in FIXED is also a good approximation with all agents,
and (2) an estimation from STAT is useful for guessing the price for FIXED.

Let OPTSTAT and OPTYXED pe optimal allocations projected to agents in
STAT and FIXED respectively. That is, OPT}T™T (resp. OPTI™*ED) is OPT;
if ¢ belongs to STAT (resp. FIXED), and () otherwise.

Lemma 3. If for some t > 1, for all i € [n], v;(OPT;) < ”(OtPT), then with

probability 1 — 2e~1/8 v(OPTSTAT) > @ and v(OPTFXED) > @'

Corollary 1. If for all i € [n], v;(OPT;) < vl(ooipT), then with probability 1 —

g m

O(1/m), v(OPTSTAT) > YOFT) 4y g (OPTFIXED) > v(OPT),

We now condition everything on the event (denoted by &) that (1) with
probability 1/2, agents are divided into 2 groups, and (2) with probability 1 —
O(1/m), the two groups are roughly balanced. We only need to show, that when
v(OPT)
dlogm
Let OPT’ be an allocation obtained by removing from QPTFXED

U(OPTFIXED)
2m

£ happens, the expected welfare of the mechanism is 2 (
any item

allocated to an agent whose price-per-item is no larger than . Observe

that
Lemma 4. v(OPT') > %U(OPTFIXED).

This means we can safely ignore agents with low price-per-item without losing
too much.

For prices high enough, the next lemma shows that we can estimate and
guess them with relatively high probability.

2m?

the price p guessed in step 4 of the mechanism sat-

IXED
Lemma 5. Conditioned on &, for anym > 512, priceq € U(OLFE)AU(OPTFIXED)] ,
with probability ﬁ >
isfies iq <p< %q.

1
5logm?’

The next step is to show that the fixed-price auction approximates the sum
of values of agents whose price-per-item is close to the guessed price p.

Lemma 6. Conditioned on £, the welfare of the allocation given by the fired-
price auction with price p is at least

ﬁ > v;(OPT)).

i€FIXED, $p: <p<3p:

We are ready to prove a lower bound on the expected welfare of the fixed-
price auction.
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Lemma 7. Conditioned on &, the expected welfare generated by the fized-price
u(OPT))

dlogm

auction is {2 (

Now we can put everything together and conclude:

Proposition 3. When agents have d-CH wvaluations, the generic mechanism
guarantees O(dlogm)-approzimation of the optimal welfare.

Proof. When there is a heavy agent (i.e., an agent ¢ with v;(OPT;) > %),
v(OPT)
2logm

Lemma 2 guarantees expected welfare . When there is no heavy agent,

v(OPT)
dlogm /*

Corollary 1 and Lemma 7 guarantee expected welfare {2 (

4 Valuations with Limited Complementarity

We show in this section, that for general valuations, the approximation guarantee
of the generic mechanism degrades smoothly as the degree of complementarity
grows. To establish this result, we first show that if a class of valuations V is
approximated by disjoint bundle valuations with limited bundle size, then the
mechanism gives a reasonable guarantee with valuations in V. Then we apply
various existing approximation lemmas to establish approximation guarantees
of the generic mechanism for submodular, XOS, subadditive, and SAW-d valu-
ations.
Formally, we define pointwise approximation between classes of valuations:

Definition 4 (Pointwise Approximation [4]). A valuation class V is point-
wise [-approxzimated by a valuation class V' if for any valuation v € V and for
any set S C [m], there exists a valuation v' € V' such that 8 -v'(S) > v(S) and
for all'T C [m] it holds that v'(T) < v(T). We also say such a v’ B-approzimates
v atS.

We first show that if d-CH p-approximates V, then the generic mechanism
guarantees O(fdlog m)-approximation of the optimal welfare, and then extend
the result to d-DB valuations, a superclass of d-CH, as defined below.

Definition 5 (d-Disjoint Bundle Valuations). A wvaluation v is d-disjoint
bundle (d-DB) if there exists disjoints sets of size at most d and corresponding
values (Q1,v(Q1)), ..., (Qe,v(Qr)), so that the value of every set S C [m] is the
sum of values of contained QQ;’s, i.e.,

v(S) = Z v(Qp)-
QrCS

We first prove the d-CH version of the extension lemma, which plays a central
part in our argument:

Lemma 8. When agents have valuations in class V, for f < m, if V is point-
wise B-approzimated by d-CH valuations, then the generic mechanism guarantees
O(Bdlogm)-approximation of the optimal welfare.
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We postpone the proof to Appendix D. Now observe that the above argu-
ment can be easily modified to work if we replace d-CH valuations with d-DB
valuations. Formally,

Lemma 9. When agents have valuations in class V, for 8 < m, if V is point-
wise B-approzimated by d-DB valuations, then the generic mechanism guarantees
O(pBdlogm)-approximation of the optimal welfare.

Again, we postpone the proof of Lemma 9 to Appendix D. Note that we do
not need to know the d-CH or d-DB valuations which approximate the v;’s —
the existence of the approximation suffices for our purpose.

With Lemma 9, we are now ready to translate the approximation lemmas by
d-DB to welfare guarantees of the generic mechanism. Restricted to complement-
free classes, it is well known that:

Lemma 10 (Folklore). Fractionally subadditive (or XOS) valuations are point-
wise 1-approzimated by 1-DB (i.e. additive) valuations.

Dobzinski [5] and Devanur et al. [4] independently show that:

Lemma 11 ([5,4]). Subadditive valuations are pointwise O(log m)-approximated
by 1-CH (i.e. homogeneously additive) valuations.

And beyond complement-free classes, Chen et al. [3] show that:

Lemma 12 ([3]). For anyd > 1, the class SAW-d is pointwise 2H,, -approzimated
by 2d-CH, where H; = Zke[i] + is the i-th harmonic number.

Applying Lemma 9 to Lemmas 10, 11, and 12, we obtain:

Theorem 3. When agents have (1) submodular or XOS, (2) subadditive, or (3)
SAW-d valuations for d > 1, the generic mechanism guarantees (1) O(logm)-,
(2) O(log® m)-, or (8) O(dlog® m)-approzimation of the optimal welfare, respec-
tively.

Proof. The Theorem follows from Lemma 9 by setting 5 to (1) 1, (2) O(logm),
and (3) 2H,, = O(logm), and d to (1) 1, (2) 1, and (3) 2d’' respectively.

5 General Monotone Valuations

In this section, we show that the generic mechanism guarantees O(y/mlogm)-
approximation of the optimal welfare, thereby concluding the proof of Theo-
rem 2. We do this, again, by modifying the outline given in Section 4 (proof
deferred to Appendix E).

Theorem 4. When agents have monotone valuations, the generic mechanism
guarantees O(y/mlogm)-approximation of the optimal welfare.

Putting Theorems 3 and 4 together, Theorem 2 follows directly.
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A Further Related Work

There is an extremely rich body of research on truthful combinatorial auctions,
agents with complements, and pointwise approximation. Our results and tech-
niques are closely related to all these fields and the research therein. We give
in this subsection a comprehensive overview of results and techniques related to
our work.

A.1 Truthful Combinatorial Auctions

Most related to our work are the line of work on computationally efficient truth-
ful combinatorial auctions [9,5,7,2]. They propose and develop the following
powerful framework for truthful combinatorial auctions with demand queries:

— If there is an agent whose share in the optimal allocation is large enough,
then we can sell the grand bundle via a second-price auction to this agent,
or someone with a higher value, to guarantee a good welfare.

— Otherwise we divide all agents into 2 groups. We then query one group to
gather information, and sell to the other group by posting prices to items to
ensure truthfulness.

In this paper, we simplify this framework, and show that what we believe to be an
essential part in fact gives smoothly degrading welfare guarantees as the degree
of complementarity grows, for all monotone valuation functions simultaneously.

Lavi and Swamy [22] give an O(y/m)-approximate truthful in expectation
protocol for agents with general valuations, and Abraham et al. [1] give a O(logk m)-
approximate truthful in expectation protocol for agents with PH-k valuations®.
These results are incomparable to ours for the following reasons. First, these
protocols are truthful in expectation, as opposed to being universally truthful.
For reasons discussed above, such protocols may not be able to prevent agents
from misreporting. Second, all PH-k valuations (as considered in [1]) are super-
additive, which means even if we are willing to settle with a loss of 2(log™ m),
their protocol still works only for a highly restricted subclass of all monotone
valuations, i.e., the superadditive class.

Feldman et al. [19] consider a Bayesian setting, where agents’ valuations
are drawn independently from publicly known distributions. They give a k-
approximation posted-price protocol w.r.t. any allocation algorithm, for agents
with MPH-k valuations!'®. Plugging in the k-approximation algorithm in [15],
their result implies a O(k?)-approximation protocol for MPH-k agents. The
O(k?) bound was later improved by Diitting et al. [11] to O(k), as a corollary
of a more general framework introduced therein. The protocols in both work
proceed by querying the prior distributions, posting prices on items, and then

9 PH-k valuations are valuations represented as nonnegatively weighted hypergraphs
with hyperedges of size not exceeding k, where the value of a set is the sum of the
weights of all hyperedges contained in this set.

19" A valuation is MPH-k [15] iff it is the pointwise maximum of some PH-k valuations.
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letting agents buy their demand bundles. They are therefore trivially truthful.
Notably, the above two papers use similar revenue-utility decomposition tech-
niques as used in this paper to derive welfare bounds''. However, these results
are incomparable to ours, since they rely crucially on access to the prior distri-
butions of valuations, and the approximation guarantees are w.r.t. the expected
optimal welfare given the prior distributions. In contrast, our protocol provides
welfare guarantees for all possible valuations in the respective classes.

A.2 Valuations with Complements

Valuations with complements have been considered in various settings. Most re-
lated to our results is the paper by Chen et al. [3], where they introduce and
justify the SAW hierarchy and its counterpart, the SMW hierarchy which gener-
alizes submodular valuations. In particular, they observe that different problems
often require different parametrizations by different measures of complementar-
ity, and the SAW hierarchy in particular is useful in analyzing the PoA of simple
auctions. Their findings suggest that the SAW hierarchy could also be useful
in analyzing other dynamics with strategic agents, e.g., truthful combinatorial
auctions, which we confirm in this paper. Abraham et al. [1], Feige et al. [15] and
Chen et al. [3] consider separately the algorithmic problem of maximizing welfare
among agents with limited complements. Different measures of complementarity
have been used to analyze the PoA [15, 18, 3] and revenue [12] of simple auctions.
It is worth noting that Devanur et al. [4] define the Constraint Homogeneous
(CH) class, which was later generalize to d-CH by Feldman et al. [18], to facili-
tate the analysis of PoA of simple auctions. The d-CH class is also an important
auxiliary valuation class in [3], and this paper.

A.3 Pointwise Approximation

Devanur et al. [4] formally define the notion of pointwise approximation, and
show that it preserves smoothness as defined by Syrgkanis and Tardos [25], and
therefore PoA bounds from the smoothness framework. Built upon this extension
lemma, pointwise approximation has been used extensively to study the PoA
of simple auctions [4,15,18,3]. These PoA bounds are established essentially
in the same way: prove smoothness for a simple class of valuations, establish
pointwise approximation of more complex classes by the simple class, and apply
the extension lemma due to Devanur et al. [4]. Little was known about the
properties of pointwise approximation outside the smoothness framework. We
note that our Lemma 9 is not simply a translation of the extension lemma in [4].
In particular, Lemma 9 explicitly requires approximation by d-DB valuations (as
opposed to arbitrary valuations in [4]) since the proof would not work otherwise.

11 Similar arguments also appear in a number of other papers on related problems. See,
e.g., [20,13].
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B Omitted Proofs in Section 2

Proof (Proof of Proposition 1). W.l.o.g. suppose m = (d+ 1) - £ for some ¢ € N.
We divide all items into £ groups M, ... My, each of size d + 1. For group k, we
create 2 agents, 2k — 1 and 2k, who are interested only in items in M. Agent
2k — 1 is unit-demand, and has value 1 for each item in Mj. Agent 2k has value
d if he has the entire My, and 0 otherwise. The optimal welfare is £ - d = %,
achieved by allocating M) to agent 2k. However, if we sell the entire bundle to
a single agent, then the maximum possible welfare is d. If we run the fixed-price
auction, then let p be the posted price. If p < 1, then for each k, agent 2k — 1
buys an arbitrary item in Mj, resulting in a welfare of £. If p > 1, then no agent
buys anything throughout the auction, resulting in a welfare of 0. In any case,
the welfare produced by the mechanism is no larger than max{d, ¢}, and the
approximation ratio is 2(min{d, m/d}).

C Omitted Proofs in Section 3

Proof (Proof of Lemma 2). Let i1 be the agent such that v;, (OPT;,) > @.
By truthfulness of second price auctions, some agent, say i5, with the maximum
value for the grand bundle, wins all items. By monotonicity, we have

UlQ([m]) > vil([m]) > Uiy (OPTil) > @7

as desired.

Proof (Proof of Proposition 2). We first construct the prices used in the posted-
price auction. Fix an optimal allocation {OPT;};. Let agent i’s valuation be given
by the price-per-item p; and bundles {Q1,...,Qj }. For each item j € OPT;,
if the bundle containing j is allocated to agent i as a whole (i.e. there is some
bundle Qf, such that j € Q% C OPT;), let the price of j in the posted-price
auction be g; := & . Otherwise, let ¢; := 0.

We now show that the posted-price auction yields a reasonable approximation
of the optimal welfare. Consider all bundles completely allocated to an agent i
in OPT. For each Q% of these bundles, one of the two happens: either some item
J € @ is purchased by some agent (not necessarily by i), or all items in the
bundle remain unsold at the end of the auction. For each agent ¢, we partition all
items in bundles owned by agent 7 in OPT into two sets: SOLD; and UNSOLD;,

containing items in the two kinds of bundles respectively. Formally,

SOLD; = {j | 3k, j € Q% C OPT,, j is sold},
UNSOLD; = {j | 3k, j € Q% C OPTy, j is not sold}.

Let v(SOLD) = ). v;(SOLD;), and v(UNSOLD) = ). v;(UNSOLD;). Note
that v;(OPT;) = v;(SOLD;)4v;(UNSOLD;), and v(OPT) = v(SOLD)+v(UNSOLD).
Consider the sold items first. We show that the total payment made by the

agents is at least %. If some item in a bundle Q% is sold, then some agent
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has to pay & > % for the item. Recall that all bundles are disjoint, and
the valuation over them is therefore in a sense additive. Summing over all sold
bundles, we see that the total price paid by all agents during the auction is at
least

Z v (QL) Z v;(SOLD;)  v(SOLD)

, 2d : 2d 2
i€[n],Qi CSOLD; i

Now consider the unsold items. We show that in the allocation given by the
posted-price auction, the surplus (i.e., the total value of the items a buyer gets
minus the total price she pays) of agent i is at least w. Note that all
items in UNSOLD,; are available throughout the auction. In particular, they are
available when agent ¢ chooses the items to purchase. By purchasing exactly the
set UNSOLD,, agent ¢ has a surplus of

_ pi|UNSOLD,| pi[UNSOLD,| _ p;|[UNSOLD;|  v;(UNSOLD;)

2
Now since agent ¢ chooses to buy another set, it must be the case that the set she
purchases gives at least the same amount of surplus, i.e., w. Summing
over agents, we see that the total surplus is at least w.
Now note that the welfare of all agents is the sum of the total payment and

S »(SOLD) |, v(UNSOLD) - v(OPT)
the total surplus, which is at least == 7= + 5 > ==

Proof (Proof of Lemma 3). We show that v(OPTSTAT) = Y icsrar Vi(OPTy) >

@ with probability at least 1 — e~*/8. The case of FIXED is totally sym-
metric, and the lemma follows from a union bound. Let X; := I[i € STAT]. By
definition of the mechanism {X,}; are i.i.d.

Consider concentration of Zie[n] X, - v;(OPT;). Note that

— Each summand X; - v;(OPT;) € [0,v;(OPT;)].
— All summands are independent.
~E [zie[n] X; -vi(OPTi)] = 1y(OPT).

By Hoeffding bound,

| 1 2(2(OPT)/ 4
Pr | 5v(OPT) — 3 X;-v(OPT;) < 7u(OPT)| <exp <_ et Mopw)

i€[n]

v(OPT)?/8 t
<exp| ————= | =e=xp|—35 )
t(v(OtPT))

which concludes the proof.
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Proof (Proof of Lemma 4).

v(OPTFXER) — (OPT') = > v;(OPT} *FP) < > pi|OPT; XED|
ipi< »(OPTFIXED) ipi < »(OPTFIXED)
= 2m = 2m
<= 7 JOPTFIXED| <« 222 = /.y
2m . ,U(gFIXED} 2m
ipi S —
_ 'U(OPTFIXED)
2 )

as desired.

Proof (Proof of Lemma 5). Recall the procedure by which p is chosen: first
query po = max;estaT V;([m]), and then choose p uniformly at random from
P = {357‘?’12 S Toz, .. ,8m>2py, 16m2p0}. First note that once we know pg, there
are at most 5log m possible values of p, and each value is chosen with probability
m. We only need to show there is some price p’ € P, such that iq <p <
%q. Or, strengthening the condition, we want to show that ¢ € [8’:32 , 16m2p0].
Observe that conditioned on £ and given Lemma 4,

1 1 1
- ; > — ;(OPTSTATY > _— 4 (OPT) > —o(OPTFIXED) > _—
po = max vi([m]) > Z_GSZT%TU( D) = —u(OPT) > o ) q

On the other hand,

v(OPTFIXED) 4 (OPT) _ ow(OPTSTATY — p,
q> > > > .
2m? 8m? 8m? 8m?2

We conclude that ¢ € [p—‘) 16mp0] C [ Lo 16m2p0}. The lemma follows.

8m?2» 8m?2"

Proof (Proof of Lemma 6). The proof is overall similar to that of Proposition 2.
Let FIXED? be the set of agents in FIXED, whose price-per-item is close to p.
That is,
1 1
FIXED? = {z € FIXED | 1P <p< 2pi}.

For each i € FIXED?, we divide items in bundles contained in OPT} into two
sets:

SOLD; = {j | 3k, j € Q}, C OPT}, j is sold},
UNSOLD; = {j | 3k, j € Q% C OPT/, j is not sold}.

Note that for ¢ ¢ FIXED?, SOLD; = UNSOLD; = {). Similarly we define

v;(SOLD;), v;(UNSOLD;), v(SOLD) and v(UNSOLD). The goal is again to show

. v(SOLD)
that the total payment is at least ===

v(UNSOLD)
—

and the total buyer surplus is at least
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Consider the sold items first. If some item in a bundle Q% is sold, then some
agent has to pay p > %pi > % for the item. Summing over all sold bundles,
we see that the total payment is at least

(7 i V; SOLDz v(SOLD
> (Q}) _ 5~ u(SOLD;) _ v(SOLD)

: 4d : 4d 4d
i€FIXEDP,Qi CSOLD; i

Now consider the unsold items. Recall that all items in UNSOLD; are avail-
able throughout the auction. In particular, they are available when agent i €
FIXEDP? chooses the items to purchase. By purchasing exactly the set UNSOLD;,
agent i has a surplus of

i [UNSOLD; ;[UNSOLD;

v:(UNSOLD;) — p|UNSOLD;| > v;(UNSOLD;,) — % — pi|UNSOLD;| — %
o pZ‘UNSOLDl| o UZ(UNSOLDl>
N 2 N 2 '

Now since agent ¢ chooses to buy another set, it must be the case that the set she
purchases gives at least the same amount of surplus, i.e., w. Summing

over agents, we see that the total surplus is at least w.
It follows that the welfare is at least
v(SOLD)  v(UNSOLD) 1 ,
> — . :
-t 5 =33 > w(OPT)),
iEFIXEDP

which concludes the proof.

Proof (Proo of Lemma 7). Note that:

— For any p1,p2 € P = {32%, 1225, ...,8m?po, 16m?py} where p1 # po,

FIXED?* NFIXED? = ). ,
— Letting FIXED' = Uy epFIXED” | 3, iy vi(OPTS) = v(OPT’). This
is because for any i € FIXED where OPT, # 0, w(OPTHER) < p <
v(OPTFXED) "y therefore falls into the interval covered by Lemma 5.

2m

The expected welfare is therefore at least

1 1 v(OPT") _ v»(OPT’) v(OPT)
Prlp = p'|- — ;(OPT)) = — > = :
> " Prlp=1p] 9w > v(OPT)) P 4d ~ 20dlogm — 160dlogm
p'eP i€EFIXED?’

The first equality and the first inequality follow from Lemma 5 and the two
observations above. The second inequality follows from Lemmas 3 and 4.

D Omitted Proofs in Section 4

Proof. The overall plan is similar to the one discussed in Section 3, except that
when no heavy agent exists, we instead use the welfare under the d-CH valuations
that approximate the actual valuations as the benchmark, losing a factor of 3:
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Outline of the proof.

v(OPT)

1. If there is a heavy agent whose share in the optimal welfare is at least Togm >

the grand-bundle second price auction gives a good approximation.

2. Otherwise, with probability 1/2 — O(1/m) event £ happens: the mechanism
proceeds to the fixed-price auction, and the optimal welfare is distributed
roughly equally to STAT and FIXED. That is, v(OPTSTAT) > @ and
v(OPTFIXED) > v(O4PT)'

3. We construct OPT’, the benchmark, as follows:

(a) Forevery i € FIXED, let v} be a d-CH valuation, satisfying (1) for all S C
[m], v(S) = v}(S N OPTI™ER) (2) for all S C [m], vi(S) < vi(S), and

) FIXED
(3) v} (OPTF*ER) > %. In other words, v} S-approximates v;

at OPT?IXED. Let p; be the price-per-item of valuation v;. Note that

’U(OPTFIXED)

U/ OPTFIXED — Ul/‘ OPTFIXED >
( )= > vi(OPT{™FP) > 3

1€ FIXED

(b) Remove all agents i whose price-per-item p; is small. That is,

FIXED v(OPTFIXED)
opT, = { OPT 0 pi = = agm—
0, otherwise
Note that
’ N / ’ U(OPTFIXED)

1€ FIXED

4. Let FIXED?P = {z € FIXED | ipi <p< %pi}. We show that a fixed-price
auction with price p generates welfare at least

1
v > v(OPT)).

1€ FIXEDP

2B8m
which is guessed with probability ﬁ, such that %q <p < %q. Taking
the expectation gives the desired approximation ratio. That is,

5. For g < 'm, for every q € {M, v(OPTFIXED)], there is some p’ € P,

! iv/(OPT') > ¥v(OPTFIXED) >

. ——o(OPT).
S5logm 4d — 408dlogm - IGOBdlogmv( )

Consider the outline above. Lemma 2 justifies Step 1. Corollary 1 justifies
Step 2. The fact that d-CH pointwise approximates V justifies Step 3(a). An
argument similar to the proof of Lemma 4 justifies Step 3(b). Lemma 5 and an
argument similar to the proof of Lemma 7 justify Step 5. We only need to prove
the validity of Step 4, which is a relaxed version of Lemma 6.
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The proof for Step 4 is again similar to those of Proposition 2 and Lemma 6.
For each ¢ € FIXED?, we divide items in bundles (induced by v}) contained in
OPT; into two sets:

SOLD; = {j | 3k, j € Q% C OPT}, j is sold},
UNSOLD; = {j | 3k, j € Qi € OPT}, j is not sold}.

Note that for ¢ ¢ FIXED?, SOLD; = UNSOLD; = (. Similarly we define

v;(SOLD;), v;(UNSOLD;), v'(SOLD) and v'(UNSOLD). We show that the total

payment is at least % and the total buyer surplus is at least w.

Consider the sold items first. If some item in a bundle @ is sold, then some

agent has to pay p > %pi > viiﬁ%‘“) for the item. Summing over all sold bundles,
we see that the total payment is at least

vi(Q! v;(SOLD; v’ (SOLD
> (@) _ 5~ vi(SOLD) _ v(SOLD)

. 4d : 4 4d
i€FIXEDP,Qi CSOLD; i

Now consider the unsold items. Recall that all items in UNSOLD; are avail-
able throughout the auction. In particular, they are available when agent i €
FIXEDP? chooses the items to purchase. By purchasing exactly the set UNSOLD;,
agent ¢ has a surplus of

v;(UNSOLD;) — p|[UNSOLD;|
> v/ (UNSOLD;) — p[UNSOLD;| > v/(UNSOLD;) — w
pi[UNSOLD;|  pi|UNSOLD;| _ v/(UNSOLD;)

— p;|[UNSOLD;| —
p;|[UNSO | 5 5 5

Now since agent ¢ chooses to buy another set, it must be the case that the set she

. . /(UNSOLD; .
purchases gives at least the same amount of surplus, i.e., % Summing

over agents, we see that the total surplus is at least w.

It follows that the welfare is at least

v'(SOLD)  ¢'(UNSOLD) _ 1 , ,
> — / ).
1a 2 =4 > u(OPT)
1€eFIXEDP

This concludes the proof for Step 4 and the theorem.

Proof (Proof of Lemma 9). We modify Step 3 of the outline, and argue that the
other steps still work.

The new Step 3. For every i € FIXED, let w; = {(Qi,ﬂ]i(@i)}kewi] be the
d-DB valuation that approximates v; at OPTY P satisfying (1) for all S C
[m], wi(S) = wi(S N OPTI™ER) (2) for all S C [m], wi(S) < v:(S), and
(3) w;(OPTIXEDY > W#;IXED). For each (Q%,w;(Q%)), construct a dummy
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single-minded agent a}, who has value w;(Q?) for bundle Q% and is not interested
in anything else. That is, the valuation of aj, satisfy

U;;'C(S) =T[Q} € 5] wi(Q})-
Note that for any i € FIXED, we have:

L. For all § C [m], wi(S) = >y, Vi (5)-
2. For all S C [m], Zke[z.] v, (S) = wz(S) < Ui(S)'
i a/k_

v; (OPTFIXED
8. Yhejey Vi (OPTI™XP) = wy (OPT]XPP) > mlOT—),

Now o' (OPTF™FP) is undefined. We instead move on to constructing OPT’

with agents {aj }x. Note that v/, is a d-CH valuation. Let Paj = wqu()Qr) be the
i :

price-per-item of dummy agent a. Let OPT’ be such that

i .~ v(OPTFXED)
OPT, = { ks Paj 2 " —g5m |
(), otherwise

We claim that with agents {a}}, valuations {v/, }, and benchmark OPT’,
k

Steps 4 and 5 still work and yield the desired guarantee. Most parts of the
original argument carries over directly, except that we need to check the buyer

surplus bound more carefully. Recall that FIXED? = {a?€ | ip < Pai < %p} For

each ai € FIXEDP, if some item in @ is sold, then UNSOLDa;-c = . Otherwise
let UNSOLDQ;-c = @%. Note that for a ¢ FIXED”, SOLD, = UNSOLD,, = 0.

For each actual agent i, let A? be the indices of dummy agents whose price-
per-item is close to p. That is,

A? = {k | aj, € FIXED"} .

Let UNSOLD; = U,¢ ApUNSOLD . Agent i can always choose to purchase set
UNSOLD;. Her surplus is therefore at least

v;(UNSOLD;) — p|UNSOLD;| > w;(UNSOLD;) — p|UNSOLD;|
=> vy (UNSOLD;) — p|UNSOLD|

keA?

= > (v (OPTL) — plQ4)
ke AP

=D CACAEEE)
ke A?

_ L, /
= Z ivai(OPT%)

ke AP
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Note that {A?}; is a partition of FIXED?. Summing over i gives that the surplus
is at least

1 1
Z P . (OPT,) =3 > v, (UNSOLD,) = Sv/(UNSOLD),

zGFIXED keA? a€FIXEDP

which concludes the proof.

E Omitted Proofs in Section 5
Proof (Proof of Theorem 4). We give the modified outline first:

Outline of the proof.

1. If there is a heavy agent whose share in the optimal welfare is at least
%, the grand-bundle second price auction gives a good approxima-
tion.

2. Otherwise, with probability 1/2—O(1/e™) event £ happens: the mechanism
proceeds to the fixed-price auction, and the optimal welfare is distributed
roughly equally to STAT and FIXED. That is, v(OPTSTAT) > 2OFD) 4
U(OPTFIXED) > 'U(OPT).

- 4 v(OPTFIXED)

3. (a) We construct OPT’, the benchmark, as follows: Let p; = TOPTFXED] I

OPTI™EP —£ () and 0 otherwise. For i € FIXED,

logm

»(OPTFIXED —
OPT) = {O?PT?IXED’ pi 2 % and |OPTITXED| <
) otherwise

(b) For i € FIXED, let v} be such that
o) = I[OPT;™EP C 8] . 0;(OPTI™EP) OPT, #0)
g 0, otherwise

Note that for any ¢ € FIXED, v} is -CH, and v} l-approximates

log m

v; at OPT}. We show later that v'(OPT') > U(OPT)
4. Let FIXED? = {z € FIXED | 1 Pi <p< 2pz} A ﬁxed -price auction with
price p generates welfare at least

mz

vl (OPTY).
WM iR

2m

5. For g < 'm, for every q € {U(OLFIXED), v(OPTFIXED)], there is some p’ € P,
which is guessed with probability m, such that ¢ € FIXED” " Taking the
expectation gives the desired approximation ratio. That is,

_ v(OPT)
~ 320/mlogm’

g

1 logm
Slogm  4y/m

v'(OPT') >
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m
logm

in, Lemma 3 justifies Step 2. Steps 4 and 5 are totally similar to the corresponding
parts in the proof of Lemma 8. We only need to show that in Step 3, conditioned
on &, the benchmark constructed approximates the optimal welfare. That is,
' (OPT’) > “9FT),

Observe that in OPT’, we eliminate the shares of two kinds of agents: (1)
agents whose price-per-item is too low, and (2) agents who have too large shares
in terms of cardinality. We bound the two parts of the loss separately, and show
that a significant fraction of the optimal welfare remains. First note that a similar

argument to the proof of Lemma 4 establishes that the first part of the loss is
’U(OPTFIXED)
2

Consider the outline above. Lemma 2 justifies Step 1. By plugging ¢t =

at most . For the second part, note that the number of agents whose
shares are large is at most m = y/mlog m. Since there is no heavy agent,

\/m/logm

the total value of the shares of these agents is at most

v(OPT) v(OPT)
Jmlogm - - .
MBI 16 Smlogm 16

Thus we have

FIXED
V' (OPT') > U(OPTFIXED)_U(OPT )_U(OPT) > _ _

v(OPT) wo(OPT) o(OPT)

2 16 8 16

where the second inequality follows from the definition of event £. This concludes
the proof.
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