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Clock auctions are a natural class of simple auction mechanisms, with numerous desirable properties including

obvious strategyproofness, credibility, and unconditional winner privacy. These properties make clock auctions

an ideal solution for real-world allocation problems, such as radio spectrum (re)allocation. Accordingly,

significant effort has been made in understanding the performance (and in particular, economic efficiency) of

clock auctions. In this paper, we make progress along this direction on multiple fronts.

Computationally, we investigate two natural problems: implementation and optimization. The former

asks to find a clock auction protocol that implements a particular input allocation function whenever there

exists one, and declare that this is impossible otherwise; the latter asks to find a clock auction protocol that

maximizes social welfare among all clock auction protocols on a particular input prior distribution. We give an

efficient algorithm for the implementation problem, and show that the optimization problem is NP-complete.

To our knowledge, these are the first results regarding the computational complexity of clock auctions. En

route to these results, we develop a complete characterization of allocation functions that can be implemented

using clock auctions, which may be of independent interest.

Information-theoretically, we present a framework connecting the economic efficiency of clock auctions to

a much cleaner problem that we call “upper tail extraction”. In particular, the inexistence of constant-factor

clock auctions for upper tail extraction would immediately imply a super-constant efficiency gap for clock

auctions. On the other hand, the existence of constant-factor clock auctions for upper tail extraction would

imply approximate efficiency in an important class of instances, strongly suggesting approximate efficiency in

general. We then construct constant-factor clock auctions for upper tail extraction in the special case with iid

agents, which, through our framework, implies approximate efficiency of clock auctions with independent

groups of agents that are each homogeneous. This removes the immediate technical obstacle to unconditional

approximate efficiency identified in prior work, and showcases the power of our framework.

CCS Concepts: • Theory of computation→ Algorithmic game theory and mechanism design.

Additional Key Words and Phrases: Mechanism Design, Clock Auctions, Simple Mechanisms, Computational

Complexity

ACM Reference Format:
Hanrui Zhang. 2025. Clock Auctions: Allocation-Based Characterization, Computational Complexity, and

Economic Efficiency. In The 26th ACM Conference on Economics and Computation (EC ’25), July 7–10, 2025,
Stanford, CA, USA. ACM, New York, NY, USA, 26 pages. https://doi.org/10.1145/3736252.3742493

1 Introduction
Clock auctions are a natural class of simple auction mechanisms. A clock auction proceeds roughly

in the following way: Suppose for concreteness that an auctioneer wants to sell 𝑘 identical items to

𝑛 > 𝑘 buyers. Each buyer 𝑖 is interested in at most one item, and is willing to pay at most 𝑣𝑖 for

it. The auctioneer maintains a vector 𝑝 of clock prices, one 𝑝𝑖 for each buyer 𝑖 . These prices are
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generally 0 at the beginning of the auction, and they keep rising until the auction terminates. Each

buyer 𝑖 reacts to the rising price 𝑝𝑖 , by quitting as soon as 𝑝𝑖 exceeds 𝑣𝑖 . The auction terminates

once there are precisely 𝑘 buyers left, at which point each remaining buyer 𝑖 receives an item, and

pays the current price 𝑝𝑖 faced by them. The freedom of the auctioneer lies in the fact that they can

raise the clock prices in any way they like, possibly depending on which buyers have quit at which

times.

Clock auctions are known to be obviously strategyproof [Li, 2017]: In principle, each buyer could

choose to quit at any time, but the “obviously rational” strategy is to quit when 𝑝𝑖 exceeds 𝑣𝑖 , as

prescribed by the auction mechanism. In addition, they are also credible [Akbarpour and Li, 2020],

meaning that the auctioneer has no incentive to deviate from the rules of the auction. In fact, clock

auctions even guarantee unconditional winner privacy [Brandt and Sandholm, 2005, Milgrom and

Segal, 2020], which ensures that the winners only need to release as much information as required

to “prove they should win”. As argued by Milgrom and Segal [2020], all these properties make clock

auctions an ideal solution for real-world high-stakes (binary) allocation problems. This renders one

question particularly important: How can we design good clock auctions? In fact, since there are

numerous reasonable objectives in auction design, let us be more specific and focus on one of the

most natural and important objectives: social welfare. The question we aim to answer in this paper,

therefore, is:

(How) can we design clock auctions that (approximately) maximize social welfare?
The nature of the above question is twofold. The first aspect concerns what we can ideally achieve

using clock auctions. It is known that clock auctions generally cannot achieve the first-best welfare

[Dütting et al., 2017, Feldman et al., 2022], even if we disregard all the computational issues to be

discussed below. One would then naturally turn to approximation and investigate the following

question: What is the worst-case gap between the best welfare achievable using clock auctions,

and the first-best? We will refer to the former as the clock-best welfare.1 Indeed, this question
has already received considerable attention. To quickly summarize what we currently know: In

the prior-free setting, there is a deterministic clock auction that achieves 𝑂 (log𝑛)-approximation

(where 𝑛 is the number of buyers or agents) against the first-best [Christodoulou et al., 2022], which

matches a lower bound for the same setting [Dütting et al., 2017]. If we allow either randomization

or access to prior distributions, then the ratio can be improved to𝑂 (log log𝑘) [Feldman et al., 2022],

where 𝑘 is the number of “maximal feasible sets” (formally defined later). It remains open if the

clock-best is always within a constant factor of the first-best in the latter (i.e., Bayesian) setting.

The second aspect concerns what we can practically achieve using clock auctions. Given a

problem instance (comprising a set of buyers or agents, a type space, feasibility constraints, and a

prior distribution, all of which will be formally defined below), efficiently computing a clock auction
that achieves the clock-best welfare appears just as nontrivial, despite the fact that by definition,

there always exists one such auction. It is known that in practice, carefully designed heuristics

perform remarkably well [Milgrom and Segal, 2020, Newman et al., 2024]. However, it is unclear

whether they offer any nontrivial worst-case guarantee. On the other hand, the constructions

discussed above that provably approximate the first-best welfare can all be computed efficiently,

but they do not seem to provide better guarantees (in any obvious way) against the clock-best than

they do against the first-best. So, despite all the efforts made so far, the computational complexity

of the clock-best is still wide open. In fact, taking a step back, given a particular way of allocating

items to agents, i.e., an allocation function, it is not even clear whether we can efficiently construct

a clock auction that implements this allocation function, or declare that it is impossible to do so.

1
This might appear somewhat ambiguous since we consider both prior-free and Bayesian settings, but here we intend to

keep the discussion informal. We will explain further where needed.
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1.1 Our Results
In this paper, we focus on single-parameter agents and binary allocation problems. Roughly

speaking, these are environments where each agent can either be served or not, and the type of each

agent is a single nonnegative number capturing how much the agent values being served. Moreover,

the mechanism is constrained in terms of which subsets of agents can be served simultaneously.
2

This is the predominant setting in which clock auctions are studied. We make progress on both

fronts discussed above, concerning the gap between the clock-best and the first-best, and that

between efficiently computable clock auctions and the clock-best, respectively.

Computational complexity of clock auctions. On the computational front, we consider two concrete

problems:

• Implementation: given a particular way of allocating items to agents (i.e., an allocation

function), construct a clock auction that implements this allocation function, or declare it is

impossible to do so. For this problem, we present an efficient (i.e., polynomial-time) algorithm

(Corollary 1, which combines Lemma 2, Algorithm 1, and Theorem 2).

• Optimization: given a problem instance, find the clock auction that maximizes social welfare

in expectation. We show this problem is NP-complete (Theorem 3), which roughly means

one cannot efficiently find a clock auction that is good enough — or tell if one exists —

unless P = NP; however, if there in fact is a good clock auction, then in hindsight, one can

easily “prove” its existence. Note that this computational hardness is fundamentally different

from the kind discussed by Milgrom and Segal [2020] and Newman et al. [2024]: The kind

of hardness they face originates directly from a classical NP-hard problem embedded in

the specific feasibility constraints arising from spectrum reallocation, while we show that

optimizing clock auctions remains hard even for extremely simple feasibility constraints

(i.e., two disjoint maximal feasible sets, one of which being a singleton). In other words, our

result establishes “endogenous” hardness of clock auctions by themselves, independent of

“exogenous” hardness embedded in feasibility constraints.

To our knowledge, our results are the first to study the (endogenous) computational complexity of

clock auctions.

Allocation-based characterization of clock auctions. A crucial technical ingredient of our computa-

tional results is a complete characterization of allocation functions that can be implemented using

clock auctions (Theorem 1), which we believe is of independent interest.
3
The characterization

itself requires a few definitions to be introduced later, so here we only discuss how it enables our

computational results.

For implementation, if the input allocation function can be implemented using clock auctions,

then our characterization guarantees that in any reasonable “state” that might be reached during a

clock auction, there always exists an agent whose clock price we can safely raise without causing

conflicts with the target allocation function. Given this fact, the algorithm proceeds in the natural

way: At each time, we pick an arbitrary agent whose price we can safely increase, and increase it

to the next critical value. Then, either we eventually reach a state where all agents that are still

active (possibly an empty set) should be served, in which case we serve them and terminate the

auction; or at some point no agent’s price can be safely raised, and we can declare the allocation

2
For example, “no more than 𝑘 agents can be served simultaneously” means a subset of agents can be served simultaneously

iff its cardinality is at most 𝑘 .
3
To build a consistent technical flow, in later sections, we will present the characterization first, and the computational

results after that.
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function not implementable because we have found a witness that the allocation function does not

satisfy our characterization.

For optimization, we construct a family of instances that encode the 3-SAT problem, which is one

of the most famous NP-complete problems. Here, our allocation-based characterization enforces

the semantics of the 3-SAT instance, making sure that if we “choose” a type vector corresponding

to a clause, then we also must choose at least one literal it contains. In light of the above, we view

the characterization as a technically more tangible definition of clock auctions. As such, we believe

it will prove useful in other technical contexts concerning clock auctions.

A framework for bounding the clock-best against the first-best. As for the gap between the clock-

best and the first-best, the main open question is the (in)existence of constant-factor clock auctions

in the Bayesian setting, which is closely related to randomized clock auctions in the prior-free

setting. We focus on the former in this paper for simplicity. Our first result is a framework for

designing constant-factor approximations, and / or proving impossibility results thereof (Lemma 3).

The framework applies to what we call independent groups, where all maximal subsets that can

be simultaneously served are independent in terms of the types of the agents in each maximal

subset. This subsumes an important class of instances identified by Feldman et al. [2022], namely

“Disjoint-Maximal-Sets” (they consider independent agents by default whereas we allow correlation

within groups), which appears hard enough to resist better approximations than what is known for

the general case. In particular, the lower bound constructed by Feldman et al. [2022] lies within

this class.

Within the class of independent groups, our framework establishes equivalence between bound-

ing the clock-best and the much cleaner problem of “upper tail extraction”, which roughly asks

to accurately identify realizations of the type vector whose ℓ1 norm is large enough using clock

auctions.
4
Technically, the equivalence builds on ideas similar to those used in the study of prophet

inequalities, e.g., an ex-ante relaxation of the prophet benchmark and the fact that the two quantities

are within a constant factor of each other. Conceptually, the framework identifies a much more

restrictive and seemingly tractable problem, such that (1) the inexistence of constant-factor clock

auctions for upper tail extraction would immediately imply a super-constant gap between the

clock-best and the first-best,
5
and (2) the existence of constant-factor clock auctions for upper tail

extraction would imply a constant gap in the case of independent groups, which would be strong

evidence that the gap is constant in general.

Constant-factor clock auctions for independent homogeneous groups. Utilizing the power of our
equivalence framework, we construct constant-factor clock auctions for independent groups that

are each “homogeneous”, i.e., agents in each group have iid types (Corollary 2). This in particular

moves the immediate technical obstacle to constant-factor clock auctions identified by Feldman

et al. [2022] out of the way. Technically, we take a “hard” approach, as opposed to “softer” ones

which appear more often in the study of prophet inequalities and simple mechanisms. We consider

clock auctions using a uniform price, and show that there is a price good enough to approximately

extract any desired upper tail; then we invoke our framework to translate this into a constant-factor

clock auction for welfare maximization. To establish the existence of a good price, we lower bound

and upper bound various tail probabilities. Part of this is done through careful manipulation of the

moment generating function to derive a new Chernoff-Hoeffding-style inequality. Our construction

4
Feldman et al. [2022] also hint at the possibility of such an equivalence (or at least one direction thereof) in the special case

of “Disjoint-Maximal-Sets with equal size maximal sets and iid bidders”. We formalize and generalize this idea, and in the

process handle a number of technical issues left out of their informal discussion.

5
Such a gap in the Bayesian setting would immediately imply a similar super-constant gap in the prior-free setting.
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Fig. 1. Best known bounds on economic efficiency of Bayesian clock auctions.

also proves a technical conjecture by Feldman et al. [2022], which connects the clock-best-vs-first-

best question to large deviations theory. In fact, here we need to handle not only large deviations,

but also “moderate” ones.

We summarize the best known bounds for Bayesian clock auctions in Figure 1.

1.2 Further Related Work
There is a long line of work on the power of clock auctions in binary allocation problems. As briefly

discussed above, Dütting et al. [2017] establish a logarithmic lower bound for deterministic clock

auctions in prior-free settings, which holds even under knapsack feasibility constraints. They also

give an efficient construction of deterministic clock auctions that achieve 𝑂 (log𝑛)-approximation

udner the same class of feasibility constraints, where 𝑛 is the number of agents. Christodoulou

et al. [2022] generalize Dütting et al.’s construction and give an efficient construction that achieves

𝑂 (log𝑛)-approximation for arbitrary downward-closed feasibility constraints. Moreover, they

show the possibility of 𝑂 (
√︁

log𝑛)-approximation in prior-free settings using randomized clock

auctions. Feldman et al. [2022] achieve significant improvement along this line by giving an

efficient construction that achieves 𝑂 (log log𝑘)-approximation, both with randomization and in

the Bayesian setting, where 𝑘 is the number of “maximal feasible sets”.

Beyond the more traditional prior-free and Bayesian settings, Gkatzelis et al. [2021] study a

prior-free setting with interdependent types, where they establish parametrized bounds in terms of

both revenue and welfare. Gkatzelis et al. [2024] study clock auctions with unreliable advice in the

prior-free setting, where they give constructions that achieve 𝑂 (log𝑛)-approximation in the worst

case, and much better guarantees when the advice turns out to be informative. Variants of clock

auctions have also been used in budget-feasible mechanism design [Balkanski et al., 2022] and

two-sided markets [Loertscher and Marx, 2020]. In particular, combinatorial clock auctions, which

are a two-stage generalization of classical clock auctions, have received considerable attention

[Ausubel and Baranov, 2017, Ausubel et al., 2006, Bousquet et al., 2016, Janssen and Kasberger, 2019,

Levin and Skrzypacz, 2016].

Another related line of research is that of simple mechanisms. A series of work (see, e.g., [Ferraioli

and Ventre, 2023, Ferraioli et al., 2021, Li, 2017, Milgrom and Segal, 2020]) connects clock auctions
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to greedy algorithms, and further to obvious strategyproofness, which is an important notion

capturing strategic simplicity. Here, we refrain from a prolonged discussion, in particular since this

direction is orthogonal to the focus of this paper. Technically, our results are also related to the

study of prophet inequalities (see, e.g., [Correa et al., 2019, Cristi and Ziliotto, 2024, Hajiaghayi

et al., 2007, Kleinberg and Weinberg, 2012, Lucier, 2017]) and posted-price mechanisms (see, e.g.,

[Alaei, 2014, Banihashem et al., 2024, Chawla et al., 2010, Correa et al., 2024, Feldman et al., 2014]).

At a high level, clock auctions are more powerful (and accordingly, less simple) compared to posted-

price mechanisms. As such, clock auctions achieve better welfare and / or revenue guarantees in

many natural settings, including ones studied in this paper. We will discuss the specific technical

connections in detail where appropriate.

2 Preliminaries
Agents, types, allocation functions, prior distributions, and feasibility constraints. There are 𝑛 single-

parameter agents 𝑁 = [𝑛]. Each agent 𝑖 has a type 𝑣𝑖 ∈ R+, representing how much they value

receiving an item. Let 𝑣 = (𝑣1, . . . , 𝑣𝑛) ∈ V denote the vector of all agents’ types, whereV ⊆ R𝑛
+

is the joint type space. Note thatV is not necessarily a product space. Throughout the paper, we

assume𝑚 = |V| < ∞ for simplicity and compactibility with computational considerations.
6
For

each 𝑖 ∈ [𝑛], letV𝑖 = {𝑣𝑖 | ∃𝑣−𝑖 ∈ R𝑛−1

+ : (𝑣𝑖 , 𝑣−𝑖 ) ∈ V}, i.e., V𝑖 is the set of all types 𝑖 can have.

Moreover, let
¯V = V1 × · · · × V𝑛 , which we will refer to as the extended type space. For any two

vectors (including type vectors and price vectors to be introduced later) 𝑣, 𝑣 ′ ∈ R𝑛
+ and 𝑆 ⊆ [𝑛], we

say 𝑣 ≥𝑆 𝑣 ′ iff 𝑣𝑖 ≥ 𝑣 ′𝑖 for all 𝑖 ∈ 𝑆 , and 𝑣𝑖 = 𝑣 ′𝑖 for all 𝑖 ∈ [𝑛] \ 𝑆 . We say 𝑣 ≥ 𝑣 ′ if 𝑣 ≥[𝑛] 𝑣 ′. We

define ≤𝑆 , etc., in the same way.

An allocation function 𝛼 : V → 2
[𝑛]

maps each vector of types to an allocation, represented

by the set of agents who receive an item. When dealing with the optimization problem of finding

welfare-maximizing clock auctions, we will consider a Bayesian setting with nontrivial feasibility

constraints. This involves a prior distribution D ∈ Δ(V). For each 𝑣 ∈ V , we let D(𝑣) ∈ [0, 1] be
the probability that the agents’ types are 𝑣 . In addition, there are feasibility constraints described by

the family of feasible sets F ⊆ 2
[𝑛]

. We assume F is downward-closed, meaning that if some 𝑆 ∈ F ,
then for any subset 𝑇 ⊆ 𝑆 , 𝑇 ∈ F . Let 𝑘 be the number of maximal sets in F , which measures the

richness of F . Given F , an allocation function 𝛼 is feasible iff 𝛼 (𝑣) ∈ F for all 𝑣 ∈ V . We will not

need to explicitly deal with payments in this paper.

Clock auctions. We adopt the formulation used by Milgrom and Segal [2020], with only minor

notational changes. A clock auction proceeds in discrete time periods 𝑡 = 1, 2, . . . . The set of

active agents at time 𝑡 is denoted by 𝐴𝑡 ⊆ [𝑛]. A history 𝐻 of length 𝑡 consists of a sequence of

subsets of agents 𝐻 = (𝐴1, . . . , 𝐴𝑡 ), where 𝐴𝑡 ⊆ 𝐴𝑡−1 ⊆ · · · ⊆ 𝐴1. For two histories 𝐻 and 𝐻 ′,
we say 𝐻 ⊑ 𝐻 ′ if 𝐻 is a prefix of 𝐻 ′. Let H𝑡 be the family of all possible length-𝑡 histories, and

H = H1 ∪H2 ∪ . . . be the set of all finite-length histories. A clock auction is specified by a clock

price 𝑝 : H → R𝑛
+ ∪ {⊥}, where for any 𝐻,𝐻 ′ ∈ H where 𝐻 ⊑ 𝐻 ′, 𝑝 (𝐻 ) ≤ 𝑝 (𝐻 ′). Here, ⊥ means

“termination”: the auction terminates and the agents who are still active each receive an item. One

of the purposes of introducing termination is to decouple allocation from any feasibility constraints.

A clock auction 𝑝 describes an allocation function 𝛼𝑝 — a partial allocation function, to be precise,

because it may not always terminate — in the following way:

• Fix a type vector 𝑣 ∈ V . Initially, all agents are active, i.e., 𝐴1 = [𝑛].
• At each time 𝑡 = 1, 2, . . . :

6
While we believe our characterization holds more generally, it is not the goal of this paper to deal with subtleties introduced

by continuity.
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– If 𝑝 (𝐻𝑡 ) ≠ ⊥, then the price vector (weakly) rises to 𝑝 (𝐻𝑡 ), where 𝐻𝑡 = (𝐴1, . . . , 𝐴𝑡 ).
Each agent 𝑖 whose type is still no smaller then the respective price remains active, i.e.,

𝐴𝑡+1 = {𝑖 ∈ [𝑛] | 𝑣𝑖 ≥ 𝑝𝑖 (𝐻𝑡 )}.
– Otherwise, the auction terminates, and the allocation at 𝑣 is 𝛼𝑝 (𝑣) = 𝐴𝑡 .

We say a clock auction 𝑝 implements an allocation function 𝛼 onV , iff 𝛼𝑝 and 𝛼 are both defined

onV and 𝛼𝑝 (𝑣) = 𝛼 (𝑣) for all 𝑣 ∈ V . An allocation function 𝛼 is implementable by clock auctions

onV iff there exists a clock auction 𝑝 that implements 𝛼 onV .

3 Allocation-Based Characterization
In this section, we present our characterization of allocation functions implementable using clock

auctions. This will serve as a technical building block of our computational results.We first introduce

a few essential definitions.

Definition 1 (free-riding). Given a type spaceV and an allocation function 𝛼 : V → 2
[𝑛]

, we say

that agent 𝑖 ∈ [𝑛] free-rides a subset of agents 𝑆 ⊆ [𝑛] \ {𝑖} at 𝑢 ∈ ¯V , iff there exists 𝑣 ∈ V such

that (1) 𝑣 ≥𝑆 𝑢 and (2) 𝑖 ∈ 𝛼 (𝑣).

The term “free-riding” comes from the following intuitive interpretation: When 𝑖 free-rides 𝑆 at

𝑢, if we view 𝑢 as “bids”, then 𝑖 might become a winner without doing anything when agents in 𝑆

raise their bids. In other words, it is possible for 𝑖 to become a winner by free-riding 𝑆 .

Definition 2 (free-riding group). Given a type spaceV an allocation function 𝛼 : V → 2
[𝑛]

, we

say 𝑆 ⊆ [𝑛] is a free-riding group at 𝑢 ∈ ¯V , iff each 𝑖 ∈ 𝑆 free-rides 𝑆 \ {𝑖} at 𝑢.

In words, in a free-riding group, every agent free-rides the rest of the group. Given the above

definitions, we are ready to state our characterization.

Theorem 1. An allocation function 𝛼 is implementable by clock auctions onV iff the following
condition holds: If 𝑆 ⊆ [𝑛] is a free-riding group at 𝑢 ∈ ¯V , then 𝑆 ⊆ 𝛼 (𝑣) for all 𝑣 ∈ V where 𝑣 ≥𝑆 𝑢.

We break the proof of Theorem 1 into two parts, necessity (Lemma 1) and sufficiency (Lemma 2).

We show necessity first.

Lemma 1. If an allocation function 𝛼 is implementable by clock auctions onV , then the following
condition holds: if 𝑆 ⊆ [𝑛] is a free-riding group at 𝑢 ∈ ¯V , then 𝑆 ⊆ 𝛼 (𝑣) for all 𝑣 ∈ V where 𝑣 ≥𝑆 𝑢.

Then we present a constructive argument (through Algorithm 1) for sufficiency.

Lemma 2. There is an efficient algorithm that computes the clock prices that implement an allocation
function 𝛼 on V if the following condition holds: If 𝑆 ⊆ [𝑛] is a free-riding group at 𝑣 ∈ ¯V , then
𝑆 ⊆ 𝛼 (𝑣 ′) for all 𝑣 ′ ∈ V where 𝑣 ′ ≥𝑆 𝑣 .

We defer the proofs of Lemma 1 and Lemma 2 to Appendix A. Instead, here we provide some

intuition behind the characterization: Imagine we are running a clock auction. Suppose at some

point, the set of active agents is 𝐴, and some agent 𝑖 free-rides all other active agents 𝑆 = 𝐴 \ {𝑖}
at 𝑢, where 𝑢 is the current clock prices (or types for inactive agents). Then given everything we

currently know, it might be the case that the true types 𝑣 satisfy 𝑣 ≥𝑆 𝑢 and 𝑖 ∈ 𝛼 (𝑣), which means

we cannot raise 𝑖’s clock price, because we would run the risk of forcing 𝑖 to quit while 𝑖 should

actually be served according to 𝛼 . Now further suppose the set of active agents 𝐴 is a free-riding

group at 𝑢. Then, by the same logic, we cannot raise the clock price of any active agent 𝑖 ∈ 𝐴,

which leaves us with no choice but to terminate the auction and serve everyone in 𝐴. Alternatively,

if 𝐴 is not a free-riding group at 𝑢, then we must be able to find some active agent 𝑖 which does

not free-ride the other active agents, and we can safely raise 𝑖’s clock price without potentially
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violating the allocation dictated by 𝛼 . This is the intuition behind the constructive direction of the

characterization, i.e., Algorithm 1.

ALGORITHM 1: An algorithm that computes the clock prices that implements any allocation function

implementable by clock auctions.

Input: type spaceV , allocation function 𝛼 , history 𝐻 = (𝐴1, . . . , 𝐴𝑡 ) of some length 𝑡 ≥ 0.

Output: clock prices 𝑝 (𝐻 ) that implements 𝛼 onV .

1 if 𝑡 = 1 then
2 for 𝑖 ∈ [𝑛] do
3 let 𝑢𝑖 ← minV𝑖 ;
4 end
5 end
6 else
7 let 𝑢 ← 𝑝 (𝐴1, . . . , 𝐴𝑡−1);

/* 𝑝 (𝐴1, . . . , 𝐴𝑡−1) has been computed before time 𝑡 and only needs to be retrieved */

8 end
9 for 𝑖 ∈ [𝑛] \𝐴𝑡 do
10 𝑢𝑖 ← max{𝑣 ∈ V𝑖 | 𝑣 < 𝑢𝑖 };
11 end
12 if 𝐴𝑡 ⊆ 𝛼 (𝑣) for all 𝑣 ≥𝐴𝑡

𝑢 then
13 return ⊥;
14 end
15 else
16 if 𝐴𝑡 \ {𝑖 ∈ 𝐴𝑡 | 𝑖 free-rides 𝐴𝑡 \ {𝑖} at 𝑢} = ∅ then
17 return error;

18 end
19 else
20 let 𝑖∗ ← min𝐴𝑡 \ {𝑖 ∈ 𝐴𝑡 | 𝑖 free-rides 𝐴𝑡 \ {𝑖} at 𝑢};

/* such an 𝑖∗ always exists when (1) 𝛼 satisfies the condition in Theorem 1,

and (2) the if-condition for termination in Line 12 does not hold */

21 end
22 if 𝑢𝑖∗ = maxV𝑖∗ then
23 let 𝑢𝑖∗ ←∞;
24 end
25 else
26 let 𝑢𝑖∗ ← min{𝑣 ∈ V𝑖∗ | 𝑣 > 𝑢𝑖∗ };
27 end
28 for 𝑖 ∈ [𝑛] \𝐴𝑡 do
29 𝑢𝑖 ← min{𝑣 ∈ V𝑖 | 𝑣 > 𝑢𝑖 };
30 end
31 return 𝑢;

32 end

4 Computational Complexity of Clock Auctions
With the allocation-based characterization in hand, we are ready to discuss the computational

complexity of clock auctions. We will discuss two specific computational problems of interest:

checking whether a given allocation function is implementable by clock auctions, and computing



Clock Auctions: Characterization, Complexity, and Efficiency EC ’25, July 7–10, 2025, Stanford, CA, USA

the welfare-maximizing allocation function that can be implemented by clock auctions given a

prior distribution.

Input encoding. In order to discuss computational complexity, we first need to specify the way

a problem instance is encoded. In the problem of checking implementability, an input instance

consists of the number of agents 𝑛, the type spaceV and the allocation function 𝛼 : V → 2
[𝑛]

to

be checked. We assume these components are given in the natural way: an input instance begins

with integers 𝑛 and𝑚, followed by𝑚 = |V| vectors, each in R𝑛
. The 𝑗-th of these vectors specifies

the 𝑗-th possible type vector in the type space. Then we have𝑚 sets, each of which is a subset of

[𝑛], corresponding to the allocation given by 𝛼 for each possible type vector. One can check that

the total length of the input instance is polynomial in 𝑛 and𝑚.

In the problem of welfare maximization, an input instance consists of the number of agents 𝑛,

the type spaceV , the prior distributionD ∈ Δ(V), and the family of feasible sets F . Again we use

the natural representation: an input instance begins with integers 𝑛,𝑚 and 𝑘 , followed by𝑚 = |V|
vectors, each in R𝑛

. Then for D, we have𝑚 nonnegative numbers representing the probability

of each type vector.
7
As for F , we assume it is specified by all maximal feasible sets, since |F |

is typically very large. That is, F is given by 𝑘 subsets of [𝑛] (with each subset represented, for

example, by a binary string of length 𝑛), where 𝑘 is the number of maximal sets in F . Again
observe that the total length of the input is polynomial in 𝑛,𝑚, and 𝑘 . We remark that the above

conventions are not unique, and any reasonable encoding of polynomial length would lead to the

same complexity results.

We first consider the problem of checking implementability, and show that this can be done in

polynomial time.

Theorem 2. There is a polynomial-time algorithm for checking whether a given allocation function
is implementable by clock auctions.

Proof. We will establish the theorem essentially as a corollary of Theorem 1 and Algorithm 1. In

fact, any algorithm that computes clock prices with the properties used in the proof would suffice

for the purpose of establishing Theorem 2. Here we use Algorithm 1 for concreteness. Observe that

unless Algorithm 1 returns error, it always generates clock prices that are feasible (i.e., weakly

increasing) under all circumstances. Moreover, these prices faithfully implement the input allocation

function whenever it is implementable by clock auctions. We thus have the following algorithm

that checks whether any given 𝛼 is implementable by clock auctions in polynomial time: For each

𝑣 ∈ V , run a clock auction with prices given by Algorithm 1. This entire procedure takes time

polynomial in 𝑛 and𝑚. If there exists some 𝑣 ∈ V on which Algorithm 1 returns error, or if the
auction terminates with an allocation different from 𝛼 (𝑣), then 𝛼 is not implementable by clock

auctions. Otherwise, 𝛼 is implementable by clock auctions, because we have computed the clock

prices that faithfully implement 𝛼 pointwise onV . □

Note that the polynomial dependency on𝑚 = |V|, which can be exponential in the number

of agents 𝑛, is generally unavoidable:𝑚 is the length of the input allocation function 𝛼 in its flat

representation (i.e., 𝛼 (𝑣) for each 𝑣 ∈ V), so merely reading 𝛼 would take time linear in𝑚. While

there are natural succinct representations ofV (e.g., as the product of each agent’s marginal type

space), it is unclear how 𝛼 can be represented in a similar way. So, unless we focus on very specific

7
Strictly speaking, we also need to specify how each number is given, and one natural way is to encode each number as a

fraction where the numerator and the denominator are integers with a certain number of digits. Our complexity results hold

for any reasonable choice of representation. Also, we do not necessarily require these numbers to be normalized, since it

makes no material difference for the welfare maximization problem. So in principle, one could also encode D by assigning

an integral weight to each possible type vector, which has a natural representation.
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cases (where 𝛼 belongs to a highly restrictive class with a natural succinct representation), the

polynomial dependency on𝑚 is necessary simply because the algorithm needs to see the entire 𝛼 .

We also remark that Lemma 2 implies an algorithm (Algorithm 1) that efficiently computes clock

prices whenever the input allocation function can be implemented using clock auctions. In other

words, given an input allocation function, we can efficiently compute clock prices that implement

it, or declare it is impossible to do so. We restate this fact in the following claim for completeness.

Corollary 1. There is an efficient algorithm that computes the clock prices that implement an
allocation function 𝛼 onV whenever such prices exist, and declares it is impossible to do so otherwise.

Also note that Theorem 2 implies that the decision version of the welfare maximization problem,

i.e., checking whether there is a clock auction that guarantees at least a certain welfare, is in NP
(see the proof of Theorem 3 in Appendix A for details), which is not clear at all without Theorem 2.

Below we show that this problem is in fact NP-complete, which means it is extremely unlikely that

there exists an efficient algorithm for computing welfare-maximizing clock auctions in general.

Theorem 3. The following decision problem is NP-complete: Given 𝑛, a type space V , a prior
distribution D over V , a family of feasible sets F in the form of all maximal feasible sets, and a
number𝑊 , decide whether there exists a clock auction onV that (1) always allocates to a feasible
set of agents, and (2) guarantees expected welfare of at least𝑊 over D. This is true even if D is the
uniform distribution overV , and F has only 2 disjoint maximal sets, one of which is a singleton.

We deferred the proof of Theorem 3 to Appendix A.

5 Economic Efficiency Independent of Computation
In this section, we investigate the information-theoretical approximation power of clock auctions

in terms of welfare, aiming to pin down the gap between the clock-best and the first-best. In other

words, our goal is to figure out how much welfare, as a fraction of the first-best welfare, can be

achieved using clock auctions, regardless of computational considerations. We focus on problem

instances with independent groups, as defined below.

Independent groups. Recall that a problem instance is specified by the number 𝑛 of agents, the

joint type space V ⊆ R𝑛
+, the joint prior distribution D ∈ Δ(V), and the family of feasible sets

F ⊆ 2
[𝑛]

. For brevity, we letM(F ) be the family of maximal sets in F , i.e.,
M(F ) = {𝑆 ∈ F | �𝑇 ∈ F : 𝑆 ⊊ 𝑇 }.

Definition 3 (independent groups). We say a problem instance (𝑛,V,D, F ) consists of indepen-
dent groups, iff the collection of random vectors {𝑣𝑆 }𝑆∈M(F) are independent, where 𝑣 ∼ D, and

𝑣𝑆 is the subvector of 𝑣 restricted to 𝑆 .

Note that the above definition in particular implies that all sets inM(F ) are disjoint.8 We note

that such instances are considered “hard enough”. In particular, the lower bound by Feldman et al.

[2022] hold for such instances. We will discuss below the implications of our results for the general

problem.

5.1 An Approximation Framework for Independent Groups
We first present a general framework for independent groups, which establishes equivalence be-

tween approximating the first-best welfare with independent groups and approximately “extracting”

an upper tail of the total value in one group. We first define the latter problem.

8
In degenerate cases sets inM(F) might overlap: When the types of some agents are constant, these constant agents can

appear in multiple sets inM(F) . Without loss of generality, such constant agents can be removed, and we disregard such

degenerate cases in the rest of the section.
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Definition 4 (upper tail extraction). Given a set of 𝑚 agents, a distribution D over R𝑚
+ and a

target 𝑡 ∈ R+, we say a clock auction protocol (given by the allocation function 𝛼) (𝜆, 𝜇)-extracts
the upper tail defined by 𝑡 iff (1) E𝑣∼D

[
∥𝑣𝛼 (𝑣) ∥1 | 𝛼 (𝑣) ≠ ∅

]
≥ 𝜆 · E𝑣∼D [∥𝑣 ∥1 | ∥𝑣 ∥1 ≥ 𝑡], and (2)

min{Pr𝑣∼D [𝛼 (𝑣) ≠ ∅], Pr[∥𝑣 ∥1 ≥ 𝑡]} ≥ 𝜇 · Pr[∥𝑣 ∥1 ≥ 𝑡].

In words, the above definition says that the clock auction 𝛼 should consistently identify cases

where the total value is large, and it should be able to do so without forcing too large a fraction of

the agents to quit as measured by their total value. 𝜆 and 𝜇 are generally both no larger than 1, and

the closer they are to 1, the better 𝛼 is in terms of extracting the upper tail. Below we estasblish the

equivalence between welfare maximization with independent groups and upper tail extraction.

Lemma 3. The following two claims are equivalent:
• There exists an absolute constant 𝐶1 ∈ (0, 1), such that for any problem instance (𝑛,V,D, F )
with independent groups, there exists a clock auction protocol 𝛼 which 𝐶1-approximates the
first-best welfare on the problem instance, i.e., E𝑣∼D [∥𝑣𝛼 (𝑣) ∥1] ≥ 𝐶1 ·E𝑣∼D

[
max𝑆∈M(F) ∥𝑣𝑆 ∥1

]
.

• There exists an absolute constant𝐶2 ∈ (0, 1), such that for any problem instance (𝑚,D, 𝑡), there
exists a clock auction protocol that (𝜆, 𝜇)-extracts the upper tail defined by 𝑡 where 𝜆 · 𝜇 ≥ 𝐶2.

The proof of the lemma is deferred to Appendix A. We make a few remarks regarding the lemma.

• The lemma is agnostic to randomization. In particular, if either claim holds for randomized

auction protocols, then the other holds for deterministic auction protocols. This is because

auction protocols for both problems can be easily derandomized, as argued in the proof of

the lemma.

• The lemma also holds for restricted classes of prior distributions. That is, if the first claim

holds when the marginal distribution for each group satisfies a certain condition, then the

second claim also holds when the prior distribution satisfies the same condition, and vice

versa. Later we will utilize this fact to establish the existence of constant-factor clock auction

protocols with independent groups when each group consists of iid agents (i.e., when each

group is homogeneous).

• In the upper tail extraction problem, when correlation is allowed, without loss of generality,

one may assume the prior distribution is exchangeable, i.e., it is invariant under permutations

of the agents. This meanswe only need to consider highly symmetric (and therefore essentially

of much lower dimensionality) prior distributions in the upper tail extraction problem to

establish either upper bounds or lower bounds for the welfare maximization problem with

independent groups.

• The equivalence also preserves super-constant approximation in certain ways. We choose

not to discuss that in detail, since the precise equivalence depends crucially on how the

approximation ratio is parametrized. As such, a rigorous and meaningful discussion would

be excessively burdensome. However, one could easily instantiate the equivalence for a

reasonable parametrization of the approximation ratio, e.g., to establish a super-constant

lower bound for the welfare maximization problem.

5.2 Constant-Factor Approximation with Homogeneous Groups
In this subsection, we utilize the approximation framework introduced above to establish the

existence of constant-factor clock auction protocols in the special case of independent groups that

are each homogeneous. That is, each group consists of iid agents (which may not be identically

distributed across different groups). We do so naturally by designing a constant-factor protocol for

the upper tail extraction problem with iid agents.
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Lemma 4. There exists an absolute constant 𝐶 > 0, such that for any upper tail extraction instance
(𝑚,D, 𝑡) with iid agents, there exists a clock auction protocol that (𝜆, 𝜇)-extracts the upper tail defined
by 𝑡 where 𝜆 · 𝜇 ≥ 𝐶 .

Proof. Let D0 be the marginal distribution of each agent (so D = D𝑚
0
). Let 𝑃𝑡 = Pr[∥𝑣 ∥1 ≥ 𝑡]

and 𝐸𝑡 = E[∥𝑣 ∥1 | ∥𝑣 ∥1 ≥ 𝑡]. We first handle the special case where E [∑𝑖 𝑣𝑖 · I[𝑣𝑖 ≥ 𝑡]] ≥ 1

100
𝑃𝑡 ·𝐸𝑡 .

When this happens, the following simple protocol (𝜆, 𝜇)-extracts the upper tail defined by 𝑡 where

𝜆 ·𝜇 ≥ 1/100: raise all agents’ prices to 𝑡 and accept all remaining agents. In particular, the probability

that the protocol returns a non-empty set is no larger than 𝑃𝑡 , and the (unconditional) expected

total value of accepted agents is at least 1/100 of the benchmark 𝑃𝑡 · 𝐸𝑡 . From now on, we focus

on the case where E [∑𝑖 𝑣𝑖 · I[𝑣𝑖 ≥ 𝑡]] < 1

100
𝑃𝑡 · 𝐸𝑡 . In such cases, without loss of generality we

can assume Pr𝑥∼D0
[𝑥 ≤ 𝑡] = 1, since the contribution of each 𝑣𝑖 on (𝑡,∞) to the benchmark is

relatively small, which means ignoring this part of 𝑣𝑖 affects the approximation ratio only by a

constant factor.

We then further restrict the problem instance while preserving the approximation ratio within a

constant factor. First we assume Pr𝑥∼D0
[0 < 𝑥 < 𝐸𝑡/(2𝑚)] = 0. This is without loss of generality up

to a constant factor, because the total contribution of each 𝑣𝑖 on (0, 𝐸𝑡/(2𝑚)) to the benchmark does

not exceed
1

2
𝑃𝑡 · 𝐸𝑡 , which means ignoring this part of the distribution affects the approximation

ratio only by a constant factor. Then we assume𝑚 ≥ 100, because otherwise one can trivially focus

on one agent and get a constant fraction of the benchmark. Moreover, one can assume 𝑣𝑖 only takes

values in {0, 𝐸𝑡/(2𝑚), 𝐸𝑡/𝑚, 2𝐸𝑡/𝑚, . . . , 𝑡/2} (without loss of generality assuming𝑚𝑡/𝐸𝑡 is a power
of 2). This is because one can round 𝑣𝑖 down to the closest value in the above set losing only a

factor of 2, and as a result, there is some 𝑡 ′ ∈ [𝑡/2, 𝑡] such that after rounding each 𝑣𝑖 (say, into 𝑣
′
𝑖 ),

we have

Pr[∥𝑣 ′∥1 ≥ 𝑡 ′] ≤ 𝑃𝑡 , Pr[∥𝑣 ′∥1 ≥ 𝑡 ′] · E[∥𝑣 ′∥1 | ∥𝑣 ′∥1 ≥ 𝑡 ′] ≥ 1

2

𝑃𝑡 · 𝐸𝑡 .

In other words, we lose another constant factor in the benchmark. In addition, one may assume

100𝑚 · E𝑥∼D0
[𝑥] ≤ 𝐸𝑡 , because otherwise the trivial protocol that always allocates to all agents

(𝜆, 1)-extracts the tail defined by 𝑡 for some absolute constant 𝜆. These restrictions (which are

without loss of generality in any case) are non-essential, and only serve the purpose of simplifying

the presentation.

Let 𝑠 = log
2
(2𝑚𝑡/𝐸𝑡 ). For each 𝑗 ∈ [𝑠], let 𝑢 𝑗 = 𝑡/2𝑗

, and 𝑞 𝑗 = Pr𝑥∼D0
[𝑥 = 𝑢 𝑗 ]. Moreover, let

𝑞0 = Pr𝑥∼D0
[𝑥 = 0]. Consider 𝑠 candidate clock auction policies, where candidate policy 𝑗 ∈ [𝑠]

raises every agent’s price to 𝑢 𝑗 and accepts all active agents if the conditional expected total value

of them is at least 𝑡/100. We will argue below that at least one of these 𝑠 candidate policies is good

enough. In particular, we will argue that 𝐸𝑡 is not too much larger than 𝑡 , and the probability that

one of these policies accepts a non-empty set is at least 𝑃𝑡 . For these purposes, we need to upper

bound the tail of ∥𝑣 ∥1 when 𝑣 ∼ D, and lower bound the tail of 𝑣 ( 𝑗 ) for each 𝑗 ∈ [𝑠], where 𝑣 ( 𝑗 ) is
the sum of𝑚 iid variables, each taking value E𝑥∼D0

[𝑥 | 𝑥 ≥ 𝑢 𝑗 ] with probability Pr𝑥∼D0
[𝑥 ≥ 𝑢 𝑗 ],

and 0 otherwise. For each 𝑗 ∈ [𝑠], let

𝑘 𝑗 = ⌈𝑡/(100E𝑥∼D0
[𝑥 | 𝑥 ≥ 𝑢 𝑗 ])⌉ .

This is the number of positive summands we need so that 𝑣 ( 𝑗 ) ≥ 𝑡/100. Note that

𝑘 𝑗 ≤
𝑡

100E𝑥∼D0
[𝑥 | 𝑥 ≥ 𝑢 𝑗 ]

+ 1 ≤ 𝑡

100𝑢 𝑗

+ 1 =
𝑡

100𝑡/2𝑗
+ 1 ≤ 𝑚

50

+ 1 ≤ 𝑚.

In other words, we never need more than𝑚 positive summands (which would be impossible and

make the reasoning below ill-formed). It is known that the tail of a binomial variable 𝑋 with
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parameters 𝑛 and 𝑝 satisfies the following claim (see, e.g., Lemma 4.7.2 in [Ash, 2012]): For any

𝑘 ∈ {0, . . . , 𝑛},

Pr[𝑋 ≥ 𝑘] ≥ 1√︁
8𝑘 (1 − 𝑘/𝑛)

· exp(−𝑛𝐷 (𝑘/𝑛 ∥ 𝑝)),

where

𝐷 (𝑎 ∥ 𝑝) = 𝑎 ln

𝑎

𝑝
+ (1 − 𝑎) ln 1 − 𝑎

1 − 𝑝 ≤ 𝑎 ln

𝑎

𝑝
,

whenever 0 ≤ 𝑝 ≤ 𝑎 ≤ 1. Utilizing this fact, we have

Pr

𝑣∼D
[𝑣 ( 𝑗 ) ≥ 𝑡/100] ≥ 1√︁

8𝑘 𝑗 (1 − 𝑘 𝑗/𝑚)
· exp

(
−𝑚𝐷

(
𝑘 𝑗/𝑚





 Pr

𝑥∼D0

[𝑥 ≥ 𝑢 𝑗 ]
))

≥ 1√︁
8𝑘 𝑗
· exp

(
−𝑘 𝑗 ln

(
𝑘 𝑗/

(
𝑚 · Pr

𝑥∼D0

[𝑥 ≥ 𝑢 𝑗 ]
)))

≥ exp

(
−𝑘 𝑗 ln

(
𝑘 𝑗/

(
𝑚 · Pr

𝑥∼D0

[𝑥 ≥ 𝑢 𝑗 ]
))
− ln𝑘 𝑗 − 2

)
≥ exp

(
−4𝑘 𝑗 ln

(
4𝑘 𝑗/

(
𝑚 · Pr

𝑥∼D0

[𝑥 ≥ 𝑢 𝑗 ]
)))

.

Let

𝑐 𝑗 =
4𝑘 𝑗

𝑚
ln

(
4𝑘 𝑗/

(
𝑚 · Pr

𝑥∼D0

[𝑥 ≥ 𝑢 𝑗 ]
))

,

and 𝑐∗ = min𝑗 𝑐 𝑗 . Note that this means that out of the 𝑠 candidate policies, there is one that produces

total (conditional expected) value at least 𝑡 with probability at least exp(−𝑚𝑐∗). This is our desired
good policy.

Nowwe turn to the tail of ∥𝑣 ∥1. We break ∥𝑣 ∥1 into two parts: the contribution of small summands

and that of large ones. To be specific, let 𝑗∗ be the largest integer in [𝑠] such that 2
𝑗/𝑚 ≤ 𝑐∗. Let

𝑣𝑠 =
∑︁

𝑖∈[𝑚]
𝑣𝑖 · I[𝑣𝑖 ≤ 𝑢 𝑗∗ ], 𝑣 ℓ =

∑︁
𝑖∈[𝑚]

𝑣𝑖 · I[𝑣𝑖 > 𝑢 𝑗∗ ] .

Clearly ∥𝑣 ∥1 = 𝑣𝑠 + 𝑣 ℓ , and as a result, for any 𝛼 ≥ 0 (we will later focus on cases where 𝛼 ≥ 𝑡/2),
we have

Pr[∥𝑣 ∥1 ≥ 2𝛼] ≤ Pr[𝑣𝑠 ≥ 𝛼] + Pr[𝑣 ℓ ≥ 𝛼] .
We will bound the two quantities on the right hand side separately.

For 𝑣 ℓ , we take the standard approach through the moment generating function. For any 𝛼 ≥ 𝑡/2
and 𝜃 > 0, we know that

Pr[𝑣 ℓ ≥ 𝛼] = Pr[exp(𝜃 · 𝑣 ℓ ) ≥ exp(𝜃 · 𝛼)] ≤ E[exp(𝜃 · 𝑣 ℓ )]
exp(𝜃 · 𝛼) =

(
E𝑥∼D0

[exp(𝜃 · 𝑥 · I[𝑥 ≥ 𝑢 𝑗∗ ])]
exp(𝜃 · 𝛼/𝑚)

)𝑚
.

In other words,

Pr[𝑣 ℓ ≥ 𝛼] ≤ exp(−𝑚 · 𝐼 (𝛼/𝑚)),
where

𝐼 (𝛼/𝑚) = sup

𝜃

[
𝜃 · 𝛼/𝑚 − ln

(
E𝑥∼D0

exp(𝜃 · 𝑥 · I[𝑥 ≥ 𝑢 𝑗∗ ])
) ]
.
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By choosing 𝜃 = 5𝑚 · 𝑐∗/𝑡 , we have

𝐼 (𝛼/𝑚) ≥ 5(𝑚 · 𝑐∗) · 𝛼/(𝑚𝑡) − ln
©­«𝑞0 +

∑︁
𝑗∈[𝑠 ]\[ 𝑗∗ ]

𝑞 𝑗 +
∑︁
𝑗∈[ 𝑗∗ ]

𝑞 𝑗 · exp(5𝑚 · 𝑐∗ · 𝑢 𝑗/𝑡)ª®¬
≥ 5𝑐∗ · 𝛼

𝑡
− ln

©­«1 +
∑︁
𝑗∈[ 𝑗∗ ]

𝑞 𝑗 · exp(5𝑚 · 𝑐 𝑗 · 𝑢 𝑗/𝑡)
ª®¬ (𝑐 𝑗 ≥ 𝑐∗, 𝑞0 +

∑
𝑗∈[𝑠 ]\[ 𝑗∗ ] 𝑞 𝑗 ≤ 1)

= 5𝑐∗ · 𝛼
𝑡
− ln

©­«1 +
∑︁
𝑗∈[ 𝑗∗ ]

𝑞 𝑗 exp

(
20𝑘 𝑗𝑢 𝑗𝑡

−1
ln

(
4𝑘 𝑗/

(
𝑚 · Pr

𝑥∼D0

[𝑥 ≥ 𝑢 𝑗 ]
)))ª®¬ .

(plugging in the definition of 𝑐 𝑗 )

Now we can (partially) plug in the choice of 𝑘 𝑗 and get:

𝐼 (𝛼/𝑚) ≥ 5𝑐∗ · 𝛼
𝑡
− ln

©­«1 +
∑︁
𝑗∈[ 𝑗∗ ]

𝑞 𝑗 exp

(
𝑢 𝑗 ln

(
4𝑘 𝑗/

(
𝑚 · Pr𝑥∼D0

[𝑥 ≥ 𝑢 𝑗 ]
) )

E𝑥∼D0
[𝑥 | 𝑥 ≥ 𝑢 𝑗 ]

)ª®¬
≥ 5𝑐∗ · 𝛼

𝑡
− ln

©­«1 +
∑︁
𝑗∈[ 𝑗∗ ]

𝑞 𝑗

(
4𝑘 𝑗/

(
𝑚 · Pr

𝑥∼D0

[𝑥 ≥ 𝑢 𝑗 ]
))ª®¬ (𝑢 𝑗 ≤ E𝑥∼D0

[𝑥 | 𝑥 ≥ 𝑢 𝑗 ])

≥ 5𝑐∗ · 𝛼
𝑡
− ln

©­«1 +
∑︁
𝑗∈[ 𝑗∗ ]

4𝑘 𝑗/𝑚ª®¬ (𝑞 𝑗 ≤ Pr𝑥∼D0
[𝑥 ≥ 𝑢 𝑗 ])

≥ 5𝑐∗ · 𝛼
𝑡
−

∑︁
𝑗∈[ 𝑗∗ ]

4𝑘 𝑗/𝑚. (ln(1 + 𝑧) ≤ 𝑧 for 𝑧 ≥ 0)

Now recall that for each 𝑗 ∈ [ 𝑗∗],

𝑘 𝑗 = ⌈𝑡/(100E𝑥∼D0
[𝑥 | 𝑥 ≥ 𝑢 𝑗 ])⌉ ≤ 𝑡/(50E𝑥∼D0

[𝑥 | 𝑥 ≥ 𝑢 𝑗 ]) ≤ 𝑡/(50𝑢 𝑗 ) = 𝑡/(50𝑡/2𝑗 ) = 2
𝑗/50.

So, by the choice of 𝑗∗, ∑︁
𝑗∈[ 𝑗∗ ]

4𝑘 𝑗/𝑚 ≤
∑︁
𝑗∈[ 𝑗∗ ]

2
𝑗/(10𝑚) ≤ 2

𝑗∗+1/(10𝑚) ≤ 1

5

𝑐∗ .

Plugging this back, we get

𝐼 (𝛼/𝑚) ≥ 5𝑐∗ · 𝛼
𝑡
− 1

5

𝑐∗ ≥ 2.3𝑐∗ · 𝛼
𝑡
,

where the latter inequality is because 𝛼 ≥ 𝑡/2. In other words, we have shown that for any 𝛼 ≥ 𝑡/2,

Pr[𝑣 ℓ ≥ 𝛼] ≤ exp

(
−2.3𝑚𝑐∗ · 𝛼

𝑡

)
.

Then we consider 𝑣𝑠 . If 𝑐∗ > 2 then 𝑣𝑠 = 0, so in the following we always assume 𝑐∗ ≤ 2. We take a

much coarser approach:We view each summand 𝑥 ·I[𝑥 < 𝑢 𝑗∗ ] where 𝑥 ∼ D0 as an arbitrary random

variable supported on [0, 𝑢 𝑗∗+1] ⊆ [0, 𝑡/(2𝑚𝑐∗)] whose mean is at most E𝑥∼D0
[𝑥] ≤ 𝑡/(100𝑚),

and apply the Chernoff bound. In particular, the worst case is when 𝑥 · I[𝑥 < 𝑢 𝑗∗ ] only takes

values in {0, 𝑡/(2𝑚𝑐∗)}, and is equal to 𝑡/(2𝑚𝑐∗) with probability precisely E[𝑥]/(𝑡/(2𝑚𝑐∗)) ≤
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𝑡/(100𝑚)/(𝑡/(2𝑚𝑐∗)) = 𝑐∗/50. Concretely, for any 𝛼 ≥ 𝑡/2, we have
Pr[𝑣𝑠 ≥ 𝛼] ≤ exp(−𝑚 · 𝐷 (𝛼/(𝑚 · (𝑡/2𝑚𝑐∗)) ∥ 𝑐∗/50))

= exp(−𝑚 · 𝐷 (2𝑐∗𝛼/𝑡 ∥ 𝑐∗/50))

≤ exp

(
−𝑚 ·

(
2𝑐∗ · 𝛼

𝑡
+ ln(100𝛼/𝑡)

))
≤ exp

(
−2𝑚𝑐∗ · 𝛼

𝑡
−𝑚

)
.

Note that the above derivation implicitly assumes 𝛼 is not too large, so it is possible that 𝑣𝑠 ≥ 𝛼

(i.e., we need no more than𝑚 positive summands). For 𝛼 large enough, Pr[𝑣𝑠 ≥ 𝛼] = 0, and the

bound above holds trivially.

Now we can put the bounds for 𝑣 ℓ and 𝑣𝑠 together and conclude that for each 𝛼 ≥ 𝑡 ,

Pr[∥𝑣 ∥1 ≥ 𝛼] ≤ exp

(
−2.3𝑚𝑐∗ · 𝛼

2𝑡

)
+ exp

(
−2𝑚𝑐∗ · 𝛼

2𝑡
−𝑚

)
≤ exp

(
−𝑚𝑐∗ · 𝛼

𝑡

)
.

Here we use the fact that𝑚𝑐∗ ≥ 1, which follows from the choice of 𝑐 𝑗 for each 𝑗 ∈ [𝑠]. In particular,

choosing 𝛼 = 𝑡 , we get

𝑃𝑡 ≤ exp(−𝑚𝑐∗),
which is no larger than the probability that our good policy extracts total value 𝑡 .

The one thing left to be shown is that 𝐸𝑡 is not too much larger than 𝑡 . If 𝐸𝑡 ≤ 2𝑡 then we are

done, so from now on we assume 𝐸𝑡 > 2𝑡 . Observe that each 𝑣 ( 𝑗 ) lower bounds ∥𝑣 ∥1. For each
𝑗 ∈ [𝑠], by essentially repeating the argument used to lower bound Pr[𝑣 ( 𝑗 ) ≥ 𝑡/100], one can show

that

Pr[𝑣 ( 𝑗 ) ≥ 𝑡] ≥ exp

(
−400𝑘 𝑗 ln

(
400𝑘 𝑗/

(
𝑚 · Pr

𝑥∼D0

[𝑥 ≥ 𝑢 𝑗 ]
)))
≥ exp(−1000𝑚𝑐 𝑗 ).

Note that we need the fact that 𝐸𝑡 > 2𝑡 so that it is always possible that 𝑣 ( 𝑗 ) ≥ 𝑡 even when 𝑗 = 𝑠

(i.e., we need no more than𝑚 summands to be positive), which ensures that the derivation of our

bound is sensible. So we have

𝑃𝑡 ≥ max

𝑗
Pr[𝑣 ( 𝑗 ) ≥ 𝑡] ≥ max

𝑗
exp(−1000𝑚𝑐 𝑗 ) = exp(−1000𝑚𝑐∗).

On the other hand, we also have: For any 𝛼 ≥ 𝑡 ,

Pr[∥𝑣 ∥1 ≥ 𝛼] ≤ exp

(
−𝑚𝑐∗ · 𝛼

𝑡

)
.

These two facts together imply

𝐸𝑡 ≤ 𝑡 · E𝑦∼Exp(𝑚𝑐∗ ) [𝑦 | 𝑦 ≥ 1000] = (1000 + 1/(𝑚𝑐∗))𝑡 ≤ 1001𝑡,

where Exp(𝑚𝑐∗) denotes the exponential distribution with rate 𝑚𝑐∗, and the last inequality is

because𝑚𝑐∗ ≥ 1 due to the choice of 𝑐 𝑗 for each 𝑗 ∈ [𝑠].
Now we can put everything together and finish the proof. We have constructed a clock auction

protocol 𝛼 satisfying:

Pr[𝛼 (𝑣) ≠ ∅] ≥ exp(−𝑚𝑐∗), E[∥𝑣𝛼 (𝑣) ∥1 | 𝛼 (𝑣) ≠ ∅] ≥ 𝑡 .

On the other hand, we have

𝑃𝑡 ≤ exp(−𝑚𝑐∗), 𝐸𝑡 ≤ 1001𝑡 .

So our protocol 𝛼 (1/1001, 1)-extracts the upper tail defined by 𝑡 . Combined with the simplifying

restrictions which impose another constant-factor gap, this implies the existence of an absolute

constant 𝐶 as desired. □
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Lemma 4 in fact proves a technical conjecture by Feldman et al. [2022], which connects clock

auctions to the theory of large deviations. As a direct corollary of Lemma 3 and Lemma 4, we have

the following result.

Corollary 2. There is an absolute constant𝐶 > 0, such that for any welfare maximization instance
(𝑛,V,D, F ) with independent groups where each group consists of iid agents, there exists a clock
auction protocol 𝛼 which 𝐶-approximates the first-best welfare on the instance.

We view Corollary 2 as strong evidence that constant-factor clock auctions exist for the general

problem. In particular, Corollary 2 removes the immediate technical obstacle to constant-factor

clock auctions identified by Feldman et al. [2022]. We also remark that although not emphasized,

our construction for Corollary 2 through Lemma 3 and Lemma 4 can be computed efficiently.

6 Discussion and Future Research
In this paper, we make progress on several fronts towards a more complete understanding of

the power of clock auctions. Computationally, we investigate implementation and optimization,

arguably the most natural and important problems in this contex. Our results show that the former

is “easy”, while the latter is “hard but not too hard”. These are the first results regarding the

computational complexity of clock auctions. En route, we develop a complete characterization of

allocation functions implementable using clock auctions, which may be of independent interest.

We then turn to the economic efficiency of clock auctions independent of computational issues.

We present a framework connecting approximate welfare maximization to the much cleaner

problem of upper tail extraction, which can be viewed as a handy tool for proving both positive and

negative results. We further present a constant-factor construction for upper tail extraction in the

special case of iid agents, which, through our framework, immediately implies a constant-factor

construction for welfare maximization in the special case of independent groups that are each

homogeneous. These results pave the way for tight bounds for the general problem.

Moving forward, the most important open question is to figure out the right gap between the

first-best and the clock-best. Concretely, we believe the immediate next step is to fully understand

the upper tail extraction problem, which would either establish a super-constant lower bound on

the gap of interest, or provide strong evidence that the gap is in fact constant. To this end, we

believe our construction for the iid case has the potential to generalize to the case with independent

but non-identical agents. The case with correlation may require a fundamentally different (and

likely “softer”) approach.

In terms of computation, one natural question is whether there are efficient approximation

algorithms for welfare maximization (with the clock-best being the benchmark). Our hardness

reduction rules out the possibility of a fully polynomial-time approximation scheme (FPTAS), but

we believe even a constant-factor algorithm would be practically meaningful. Designing such a

constant-factor algorithm (without closing the gap between the clock-best and the first-best) would

likely involve heavy use of our allocation-based characterization.
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A Omitted Proofs
Proof of Lemma 1. Fix some 𝛼 and suppose it is implemented by clock prices 𝑝 . Consider any

𝑢 ∈ ¯V and 𝑆 ⊆ [𝑛], such that 𝑆 is a free-riding group at 𝑢. We will show that for any 𝑣 ∈ V where

𝑣 ≥𝑆 𝑢, 𝑆 ⊆ 𝛼 (𝑣).
Let (𝐴1, . . . , 𝐴𝑡 ) be the sequence of active sets produced by 𝑝 when the types are 𝑣 . We know

𝑝 (𝐴1, . . . , 𝐴𝑡 ) = ⊥ and 𝐴𝑡 = 𝛼 (𝑣), since 𝑝 implements 𝛼 on V . For each 𝑖 ∈ [𝑛], let 𝑡𝑖 = min{𝜏 |
𝑝 (𝐴1, . . . , 𝐴𝜏 ) > 𝑢𝑖 }. In particular, if 𝑝𝑖 (𝐴1, . . . , 𝐴𝑡−1) ≤ 𝑢𝑖 , then we let 𝑡𝑖 = 𝑡 . Observe that if 𝑡𝑖 = 𝑡

for all 𝑖 ∈ 𝑆 , then for each 𝑖 ∈ 𝑆 , we must have 𝑣𝑖 ≥ 𝑢𝑖 ≥ 𝑝𝑖 (𝐴1, . . . , 𝐴𝑡−1), which means 𝑖 ∈ 𝐴𝑡 and

𝑖 ∈ 𝛼 (𝑣). So we only need to show that 𝑡𝑖 = 𝑡 for all 𝑖 ∈ 𝑆 .
To this end, let 𝑖∗ = argmin𝑖∈𝑆 𝑡𝑖 . Suppose towards a contradiction that 𝑡𝑖∗ < 𝑡 . Since 𝑆 is a free-

riding group at 𝑢 and 𝑖∗ ∈ 𝑆 , there must exists some 𝑣 ′ ∈ V such that 𝑣 ′ ≥𝑆\{𝑖∗ } 𝑢 and 𝑖∗ ∈ 𝛼 (𝑣 ′).
Let (𝐴′

1
, . . . , 𝐴′

𝑡 ′ ) be the sequence of active sets produced by 𝑝 when the types are 𝑣 ′. Again, we
must have 𝑝 (𝐴′

1
, . . . , 𝐴′

𝑡 ′ ) = ⊥ and 𝐴′
𝑡 ′ = 𝛼 (𝑣 ′), since 𝑝 implements 𝛼 on V . Now observe that 𝑝

cannot distinguish between 𝑣 and 𝑣 ′ before time 𝑡𝑖∗ , i.e., for all 𝜏 ≤ 𝑡𝑖∗ , 𝐴𝜏 = 𝐴′𝜏 . Intuitively, this is
because for any 𝑖 ∈ 𝑆 , the clock price never rises above 𝑢𝑖 ≤ min{𝑣𝑖 , 𝑣 ′𝑖 } before time 𝑡𝑖∗ , and for any

𝑖 ∈ [𝑛] \ 𝑆 , 𝑣𝑖 = 𝑣 ′𝑖 = 𝑢𝑖 . We will formally prove this fact momentarily, but for now, let us show how

it leads to a contradiction, which establishes the lemma to be proved.

Given that 𝐴𝜏 = 𝐴′𝜏 for all 𝜏 ≤ 𝑡𝑖∗ , we have 𝑝𝑖∗ (𝐴1, . . . , 𝐴𝑡𝑖∗ ) = 𝑝𝑖∗ (𝐴′1, . . . , 𝐴′𝑡𝑖∗ ). Since 𝑡𝑖∗ < 𝑡 and

𝑣 ′ ≥𝑆\{𝑖 } 𝑢, we have 𝑣 ′𝑖∗ = 𝑢𝑖∗ ≤ 𝑣𝑖∗ < 𝑝𝑖∗ (𝐴1, . . . , 𝐴𝑡𝑖∗ ) = 𝑝𝑖∗ (𝐴′1, . . . , 𝐴′𝑡𝑖∗ ), which means 𝑖∗ ∉ 𝐴′
𝑡∗
𝑖
+1.

This implies 𝑖∗ ∉ 𝐴′
𝑡 ′ = 𝛼 (𝑣 ′) since 𝐴′

𝑡 ′ ⊆ 𝐴′𝑡𝑖∗+1, contradicting the choice of 𝑣 ′.
Now we only need to show that for all 𝜏 ≤ 𝑡𝑖∗ , 𝐴𝜏 = 𝐴′𝜏 . We proceed by induction. Observe that

𝐴1 = 𝐴′
1
= [𝑛]. Suppose for some 𝑘 ≤ 𝑡𝑖∗ , the following is true: for any 𝜏 < 𝑘 , 𝐴𝜏 = 𝐴′𝜏 . We need to

show 𝐴𝑘 = 𝐴′
𝑘
. Let 𝑞 = 𝑝 (𝐴1, . . . , 𝐴𝑘−1) = 𝑝 (𝐴′

1
, . . . , 𝐴′

𝑘−1
). By definition, 𝐴𝑘 = {𝑖 ∈ [𝑛] | 𝑣𝑖 ≥ 𝑞𝑖 },

𝐴′
𝑘
= {𝑖 ∈ [𝑛] | 𝑣 ′𝑖 ≥ 𝑞𝑖 }. We argue that for any 𝑖 ∈ [𝑛], 𝑖 ∈ 𝐴𝑘 ⇐⇒ 𝑖 ∈ 𝐴′

𝑘
. There are two cases:

• When 𝑖 ∈ 𝑆 , by the choice of 𝑖∗ we know that 𝑡𝑖 ≥ 𝑡𝑖∗ > 𝑘 − 1, which means 𝑢𝑖 ≥ 𝑞𝑖 . Since

𝑣 ≥𝑆 𝑢, we have 𝑣𝑖 ≥ 𝑢𝑖 ≥ 𝑞𝑖 , and 𝑖 ∈ 𝐴𝑘 . Since 𝑣
′ ≥𝑆\{𝑖 } 𝑢, we have 𝑣 ′𝑖 = 𝑢𝑖 ≥ 𝑞𝑖 , and 𝑖 ∈ 𝐴′𝑘 .

• When 𝑖 ∈ [𝑛] \ 𝑆 , for similar reasons we know that 𝑣𝑖 = 𝑢𝑖 = 𝑣 ′𝑖 . So 𝑣𝑖 ≥ 𝑞𝑖 ⇐⇒ 𝑣 ′𝑖 ≥ 𝑞𝑖 ,

which means 𝑖 ∈ 𝐴𝑖 ⇐⇒ 𝑖 ∈ 𝐴′𝑖 .
This finishes the proof. □

Proof of Lemma 2. We first show that Algorithm 1 is efficient, i.e., it runs in time polynomial in

𝑛 and𝑚 = |V|. The bottleneck of the algorithm is Line 11, where we need to check for every 𝑖 ∈ 𝐴𝑡

whether 𝑖 free-rides 𝐴𝑡 \ {𝑖} at 𝑢. This can be done by enumerating 𝑣 ∈ V and checking whether

(1) 𝑣 ≥𝐴𝑡 \{𝑖 } and (2) 𝑖 ∈ 𝛼 (𝑣), which can be done in time 𝑂 ( |V|) = 𝑂 (𝑚). Line 11 therefore takes
time 𝑂 (𝑛𝑚). Then in Line 14, we can reuse the result computed in Line 11 and retrieve 𝑖∗ directly
in time 𝑂 (𝑛). Another tricky step is Line 5, where we either retrieve 𝑢 from the previous time or

re-compute it through a recursive call. Even if we always re-compute 𝑢, the overhead incurred is

still polynomial, since we make precisely one recursive call to the previous time, and the recursion

tree is of size𝑂 (𝑡). Moreover, we will see below that the entire auction must terminate in 𝑛𝑚 steps,

which means we always have 𝑡 ≤ 𝑚𝑛, and the total time it takes for the algorithm to compute all

clock prices throughout an auction is polynomial.

Also, observe that Algorithm 1 outputs feasible (i.e., weakly increasing) clock prices. This can

be easily verified by examining the algorithm. Now we prove that Algorithm 1 in fact outputs

clock prices that implement 𝛼 onV . First observe that the clock auction induced by the algorithm

terminates for every 𝑣 ∈ V . This is simply because at each time 𝑡 , if the algorithm does not output

⊥, then the clock price strictly increases for some 𝑖 ∈ [𝑛], to either the next feasible value inV𝑖 or

to∞. Such an increase can happen at most

∑
𝑖 |V𝑖 | times (by which time all clock prices are∞ and
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no agent remains active), which means the auction must terminate in 𝑛 |V| = 𝑛𝑚 steps. So we only

need to argue that the auction correctly identifies the set of winners. Fix any 𝑣 ∈ V and consider

the behavior of the algorithm. Suppose the auction terminates at time 𝑡 and the sequence of active

sets is (𝐴1, . . . , 𝐴𝑡 ), with 𝑝 (𝐴1, . . . , 𝐴𝑡 ) = ⊥. We need to show that 𝐴𝑡 = 𝛼 (𝑣).
We first show that 𝛼 (𝑣) ⊆ 𝐴𝑡 , i.e., for each 𝑖 ∈ 𝛼 (𝑣), 𝑖 ∈ 𝐴𝑡 . In fact, we argue inductively that for

any 𝜏 ≤ 𝑡 :

• For each 𝑖 ∈ 𝛼 (𝑣), 𝑖 ∈ 𝐴𝜏 .

• For each 𝑖 ∈ [𝑛] \ 𝛼 (𝑣), 𝑝𝑖 (𝐴1, . . . , 𝐴𝜏−1) ≤ min{𝑣 ∈ V𝑖 | 𝑣 > 𝑣𝑖 }.
Suppose this is true for 𝜏 = 𝑘 − 1, and below we establish it for 𝜏 = 𝑘 .

Since 𝑖 ∈ 𝐴𝑘−1, we have 𝑝𝑖 (𝐴1, . . . , 𝐴𝑘−2) ≤ 𝑣𝑖 . For the first bullet point, we have two possible

cases:

• When 𝑝𝑖 (𝐴1, . . . , 𝐴𝑘−2) < 𝑣𝑖 , since 𝑝𝑖 can only increase to the next feasible value inV𝑖 , we

know that 𝑝𝑖 (𝐴1, . . . , 𝐴𝑘−1) ≤ 𝑣𝑖 , and 𝑖 ∈ 𝐴𝑘 .

• When 𝑝𝑖 (𝐴1, . . . , 𝐴𝑘−2) = 𝑣𝑖 , we argue that 𝑝𝑖 (𝐴1, . . . , 𝐴𝑘−1) = 𝑣𝑖 . Consider the behavior of

Algorithm 1 at time 𝑘 −1. When 𝑖∗ is computed, we know that for any 𝑖′ ∈ [𝑛] \𝐴𝑘−1,𝑢𝑖′ = 𝑣𝑖′ .

This is because by the induction hypothesis, 𝑝𝑖′ (𝐴1, . . . , 𝐴𝑘−2) = min{𝑣 ∈ V𝑖′ | 𝑣 > 𝑣𝑖′ }, and
𝑢𝑖′ is obtained by decreasing 𝑝𝑖′ (𝐴1, . . . , 𝐴𝑘−2) to the next feasible value. Moreover, for any

𝑖′ ∈ 𝐴𝑘−1, clearly 𝑢𝑖′ ≤ 𝑣𝑖′ . As a result, 𝑣 ≥𝐴𝑘−1\{𝑖 } 𝑢 at the time when 𝑖∗ is computed, and 𝑖∗

cannot be 𝑖 . This means 𝑝𝑖 (𝐴1, . . . , 𝐴𝑘−1) = 𝑣𝑖 , and 𝑖 ∈ 𝐴𝑘 .

For the second bullet point, again we have two possible cases:

• When 𝑝𝑖 (𝐴1, . . . , 𝐴𝑘−2) ≤ 𝑣𝑖 , since the clock price for each agent can only increase to the

next feasible value, we always have 𝑝𝑖 (𝐴1, . . . , 𝐴𝑘−1) ≤ min{𝑣 ∈ V𝑖 | 𝑣 > 𝑣𝑖 }.
• When 𝑝𝑖 (𝐴1, . . . , 𝐴𝑘−2) = min{𝑣 ∈ V𝑖 | 𝑣 > 𝑣𝑖 }, we know 𝑖 ∉ 𝐴𝑘−1, and 𝑢𝑖 changes only in

Line 7 and Line 20. In Line 7, 𝑢𝑖 is decreased to the next feasible value, and in Line 20, it is

increased to the next feasible value. As a result, 𝑝𝑖 (𝐴1, . . . , 𝐴𝑘−1) returned by the algorithm

(value of 𝑢𝑖 at Line 21) is the same as 𝑝𝑖 (𝐴1, . . . , 𝐴𝑘−2) (value of 𝑢𝑖 at Line 5).
Now we show that𝐴𝑡 ⊆ 𝛼 (𝑣), i.e., for each 𝑖 ∈ [𝑛] \𝛼 (𝑣), 𝑖 ∉ 𝐴𝑡 . Suppose towards a contradiction

that there exists 𝑖 ∈ [𝑛] \ 𝛼 (𝑣) such that 𝑖 ∈ 𝐴𝑡 . Then, since 𝛼 (𝑣) ⊆ 𝐴𝑡 and 𝑝𝑖′ (𝐴1, . . . , 𝐴𝑡−1) =
min{𝑣 ∈ V𝑖′ | 𝑣 > 𝑣𝑖′ } for all 𝑖′ ∈ [𝑛] \ 𝐴𝑡 , we know 𝑢 at Line 8 satisfies 𝑣 ≥𝐴𝑡

𝑢. Now clearly,

𝑖 ∈ 𝐴𝑡 ⊈ 𝛼 (𝑣), which means the if-condition in Line 8 is not satisfied and the algorithm cannot

output ⊥, a contradiction. This finishes the proof. □

Proof of Theorem 3. We first show the problem is in NP. That is, we show there is a certificate

that can be checked in polynomial time iff the target welfare𝑊 is achievable. The certificate we use

is an allocation function 𝛼 onV that (1) is implementable by clock auctions onV , (2) is feasible,

and (3) results in expected welfare at least𝑊 . Such a certificate can be efficiently checked because

(1) by Theorem 2, there is an algorithm that checks the implementability of 𝛼 in polynomial time,

and (2) given 𝛼 and F in the maximal sets representation, it is easy to check whether 𝛼 is feasible,

and (3) given 𝛼 and D, it is easy to compute the expected welfare guaranteed by 𝛼 and compare it

against𝑊 . There exists such an allocation function 𝛼 iff𝑊 can be achieved.

Now we show the problem is NP-hard. We present a reduction from 3-SAT. Given a 3-SAT

instance with 𝑎 variables and 𝑏 clauses, we create an instance of the above decision problem with

𝑛 = 2𝑎 + 1 agents,𝑚 = 2𝑎 + 𝑏 points in the type space, and 𝑘 = 2 disjoint maximal sets describing

feasibility, one of which is a singleton. We let D be the uniform distribution over the type space.

Without loss of generality, we assume the 3-SAT instance consists of at least 10 (or any number

that is large enough) copies of the clause 𝑥+𝑖 ∨ 𝑥−𝑖 for each variable 𝑥𝑖 . Intuitively, this ensures that

𝑥𝑖 must “have a value”. We describe the construction below.
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• The two maximal feasible sets are {1} and {2, . . . , 2𝑎 + 1} = {2, . . . , 𝑛}.
• Variables: Intuitively, each variable 𝑥𝑖 where 𝑖 ∈ [𝑎] “involves” agents 2𝑖 (corresponding to

𝑥+𝑖 ) and (2𝑖 + 1) (corresponding to 𝑥−𝑖 ). Agent 1 is reserved for special use. For each variable

𝑥𝑖 where 𝑖 ∈ [𝑎], create two type vectors 𝑣𝑥
+
𝑖 and 𝑣𝑥

−
𝑖 inV . 𝑣𝑥

+
𝑖 is constructed as follows:

– 𝑣
𝑥+𝑖
1

= 3𝑎 − 7/2.
– 𝑣

𝑥+𝑖
2𝑖

= 1.

– 𝑣
𝑥+𝑖
𝑗

= 3 for all 𝑗 ∈ [2𝑎 + 1] \ {1, 2𝑖}.
𝑣𝑥
−
𝑖 is constructed similarly, except that 𝑣

𝑥−𝑖
2𝑖+1 = 1 and 𝑣

𝑥−𝑖
2𝑖

= 3:

– 𝑣
𝑥−𝑖
1

= 3𝑎 − 7/2.
– 𝑣

𝑥−𝑖
2𝑖+1 = 1.

– 𝑣
𝑥−𝑖
𝑗

= 3 for all 𝑗 ∈ [2𝑎 + 1] \ {1, 2𝑖 + 1}.
• Clauses: Intuitively, each clause 𝑐𝑖 where 𝑖 ∈ [𝑏] “involves” agents corresponding to the

literals that appear in 𝑐𝑖 . That is, we create a type vector 𝑣
𝑐𝑖
for each clause 𝑐𝑖 where 𝑖 ∈ [𝑏]

in the following way:

– 𝑣
𝑐𝑖
1
= 3𝑎 − 7/2.

– For each 𝑥𝑠𝑗 appearing in 𝑐𝑖 , 𝑣
𝑐𝑖
2𝑗+I[𝑠=−] = 1, where 𝑠 is either + or −, and I[·] is the indicator

function.

– For all other 𝑗 ∈ [2𝑎 + 1], 𝑣𝑐𝑖
𝑗
= 3.

We pick

𝑊 =
𝑎 · (3𝑎 − 2) + 𝑎 · (3𝑎 − 3) + 𝑏 · (3𝑎 − 7/2)

2𝑎 + 𝑏 ,

and claim that the target welfare of𝑊 is achievable iff the 3-SAT instance can be satisfied.

Below we prove that𝑊 is achievable iff the 3-SAT instance can be satisfied. We first show the

“if” direction, i.e., given an assignment that satisfies the clauses,𝑊 is achievable. We construct an

allocation function 𝛼 in the following way:

• For each variable 𝑥𝑖 :

– If 𝑥𝑖 = + in the assignment, then

𝛼 (𝑣𝑥+𝑖 ) = {2, . . . , 2𝑎 + 1} \ {2𝑖} and 𝛼 (𝑣𝑥−𝑖 ) = {2, . . . , 2𝑎 + 1}.

– If 𝑥𝑖 = − in the assignment, then

𝛼 (𝑣𝑥+𝑖 ) = {2, . . . , 2𝑎 + 1} and 𝛼 (𝑣𝑥−𝑖 ) = {2, . . . , 2𝑎 + 1} \ {2𝑖 + 1}.

• For each clause 𝑐𝑖 , 𝛼 (𝑣𝑐𝑖 ) = {1}.
One can check that 𝛼 is feasible, and the welfare guaranteed by 𝛼 is precisely𝑊 . Below we argue

that 𝛼 is implementable by clock auctions. We only need to verify the condition in Theorem 1.

Suppose there is a free-riding group 𝑆 at 𝑢 ∈ ¯V , and moreover, there exists 𝑣 ∈ V where 𝑣 ≥𝑆 𝑢.
We show that 𝑆 ⊆ 𝛼 (𝑉 ). In doing so, without loss of generality we assume |{𝑖 ∈ {2, . . . , 2𝑎 + 1} |
𝑢𝑖 = 1}| > 1, because otherwise 𝑢 is a maximal type vector and the claim holds trivially. Let

𝑇 = {𝑖 ∈ 𝑆 | 𝑢𝑖 = 1}. We claim that for all 𝑖 ∈ {2, . . . , 2𝑎 + 1} \𝑇 , 𝑢𝑖 ≠ 1 (which means 𝑢𝑖 = 3). To

see why this must be true, suppose otherwise. There are two cases that both lead to contradictions:

• If𝑇 = ∅, then for any 𝑣 ′ ∈ V where 𝑣 ′ ≥𝑆\{𝑖 } for some 𝑖 ∈ 𝑆 , |{ 𝑗 ∈ {2, . . . , 2𝑎+1} | 𝑣 ′𝑗 = 1}| > 1

(recall the assumption we made above without loss of generality), and therefore 𝑖 ∉ 𝛼 (𝑣 ′) by
the construction of 𝛼 because 𝑣 ′ must be a type vector corresponding to a clause.
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• If 𝑇 ≠ ∅, then for any 𝑣 ′ ∈ V where 𝑣 ′ ≥𝑆\{𝑖 } for some 𝑖 ∈ 𝑇 , |{ 𝑗 ∈ {2, . . . , 2𝑎 + 1} | 𝑣 ′𝑗 =
1}| > 1, and therefore 𝑖 ∉ 𝛼 (𝑣 ′) by the construction of 𝛼 because 𝑣 ′ must be a type vector

corresponding to a clause.

Now for each 𝑖 ∈ {2, . . . , 2𝑎 + 1}, define ind(𝑖) ∈ [𝑎] and sgn(𝑖) ∈ {+,−} such that

𝑖 = 2 · ind(𝑖) + I[sgn(𝑖) = −] .

That is, 𝑖 is the agent corresponding to 𝑥
sgn(𝑖 )
ind(𝑖 ) in our reduction. One can check that for each 𝑖 ∈ 𝑇 ,

in order for 𝑖 to free-ride 𝑆 \ {𝑖} at 𝑢, we must have 𝑥ind(𝑖 ) ≠ sgn(𝑖) in the assignment that satisfies

the 3-SAT instance, because only in this case there is some 𝑣 ′ ∈ V where 𝑖 ∈ 𝛼 (𝑣 ′) and 𝑣 ′𝑖 = 1,

which is a necessary condition for 𝑖 to free-ride 𝑆 \ {𝑖} at 𝑢.
Given the above, we claim that 𝑣 cannot be a type vector corresponding to some clause. Suppose

towards a contradiction that there is a clause 𝑐𝑖 where 𝑖 ∈ [𝑏] such that 𝑣 = 𝑣𝑐𝑖 . Then for any

𝑗 ∈ {2, . . . , 2𝑎 + 1}, 𝑣 𝑗 = 1 =⇒ 𝑢 𝑗 = 1 =⇒ 𝑗 ∈ 𝑇 because 𝑣 ≥𝑆 𝑢. Recall that 𝑣 𝑗 = 1 iff 𝑥
sgn( 𝑗 )
ind( 𝑗 )

appears in 𝑐𝑖 . The above implies that for any literal 𝑥𝑠𝑗 appearing in 𝑐𝑖 , 𝑥 𝑗 ≠ 𝑠 in the assignment

that satisfies the 3-SAT instance, which is impossible because the assignment by definition must

satisfy 𝑐𝑖 . Moreover, the above reasoning also implies 1 ∉ 𝑆 , because for 1 to free-ride 𝑆 \ {1}, there
must be some 𝑐𝑖 such that 𝑣𝑐𝑖 ≥𝑆\{𝑖 } 𝑢 =⇒ 𝑣𝑐𝑖 ≥𝑆 𝑢.

Now the only possibility left for 𝑣 is 𝑣 = 𝑣𝑥
𝑠
𝑖 for some 𝑖 ∈ [𝑎] and 𝑠 ∈ {+,−}. Then we must have

2𝑖 + I[𝑠 = −] ∈ 𝑇 , and 2𝑖 + I[𝑠 = −] ∈ 𝛼 (𝑣) because this is the only way for 2𝑖 + I[𝑠 = −] to free-ride
𝑆 \ {2𝑖 + I[𝑠 = −]} at 𝑢. As for each 𝑖′ ∈ 𝑆 \ {2𝑖 + I[𝑠 = −]} (note that 𝑖′ ≠ 1 because 1 ∉ 𝑆), we

know 𝑣𝑖′ = 3 and by construction, 𝑖′ ∈ 𝛼 (𝑣). This means 𝑆 ⊆ 𝛼 (𝑣).
Now we prove the other direction, i.e., if𝑊 is achievable by clock auctions, then there is an

assignment that satisfies the 3-SAT instance. Let 𝛼 be a feasible allocation function implementable

by clock auctions that guarantees welfare at least𝑊 . We first argue that this is possible only when

the following are true:

• For any 𝑖 ∈ [𝑎], ∑︁
𝑗∈𝛼 (𝑣𝑥

+
𝑖 )

𝑣
𝑥+𝑖
𝑗
+

∑︁
𝑗∈𝛼 (𝑣𝑥

−
𝑖 )

𝑣
𝑥−𝑖
𝑗

= 6𝑎 − 5.

• For any 𝑖 ∈ [𝑏], 𝛼 (𝑣𝑐𝑖 ) = {1}.
These conditions ensure that 𝛼 essentially encodes an assignment of the 3-SAT variables.

To see why the above is true, first observe that the welfare guaranteed by 𝛼 under these conditions

is precisely𝑊 . Moreover, it is impossible to get higher welfare by changing 𝛼 on 𝑣𝑐𝑖 for any 𝑖 ∈ [𝑏].
The only possibility left that𝑊 might be achieved without the above conditions holding is if there

is some 𝑖 ∈ [𝑎] where 𝛼 (𝑣𝑥+𝑖 ) = 𝛼 (𝑣𝑥−𝑖 ) = {2, . . . , 2𝑎 + 1}, in which case∑︁
𝑗∈𝛼 (𝑣𝑥

+
𝑖 )

𝑣
𝑥+𝑖
𝑗
+

∑︁
𝑗∈𝛼 (𝑣𝑥

−
𝑖 )

𝑣
𝑥−𝑖
𝑗

= 6𝑎 − 4 > 6𝑎 − 5.

However, doing so would cause significant welfare loss on other type vectors, and thus sacrifice

welfare optimality. In particular, recall that we assume without loss of generality there are at least

10 copies of the clause 𝑥+𝑖 ∨ 𝑥−𝑖 in the 3-SAT instance. Consider any one of these copies 𝑐 𝑗 . Suppose

𝛼 (𝑣𝑥+𝑖 ) = 𝛼 (𝑣𝑥−𝑖 ) = {2, . . . , 2𝑎 + 1}. Then 𝑆 = {2𝑖, 2𝑖 + 1} is a free-riding group at 𝑣𝑐 𝑗 , because (1)

𝑣𝑥
+
𝑖 ≥{2𝑖+1} 𝑣𝑐 𝑗 and 2𝑖 ∈ 𝛼 (𝑣𝑥+𝑖 ), and (2) 𝑣𝑥

−
𝑖 ≥{2𝑖 } 𝑣𝑐 𝑗 and 2𝑖 + 1 ∈ 𝛼 (𝑣𝑥−𝑖 ). Since 𝛼 is implementable

by clock auctions, this means {2𝑖, 2𝑖 + 1} ⊆ 𝛼 (𝑣𝑐 𝑗 ), which means 𝛼 (𝑣𝑐 𝑗 ) ⊆ {2, . . . , 2𝑎 + 1}. The value
we get on type vector 𝑣𝑐 𝑗 is therefore at most 3𝑎−4, which is smaller by 1/2 than the maximum value

possible, 3𝑎−7/2, obtained when 𝛼 (𝑣𝑐 𝑗 ) = {1}. So, by picking 𝛼 (𝑣𝑥+𝑖 ) = 𝛼 (𝑣𝑥−𝑖 ) = {2, . . . , 2𝑎+1}, we
get an improvement of 1 on 𝑣𝑥

+
𝑖 and 𝑣𝑥

−
𝑖 combined (not weighted by the prior probability 1/(2𝑎 + 1))
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but must also suffer a loss of at least 10× 1/2 = 5 (again, unweighted by 1/(2𝑎 + 1)) on all 𝑣𝑐 𝑗 where

𝑐 𝑗 is a copy of 𝑥+𝑖 ∨ 𝑥−𝑖 , resulting in a net loss of 4. We therefore conclude that the conditions above

must hold for 𝛼 .

Now we can construct an assignment of the variables given 𝛼 , since the conditions above

guarantee that 𝛼 is structured. For each 𝑖 ∈ [𝑎], we let 𝑥𝑖 = + if 𝛼 (𝑣𝑥
+
𝑖 ) = {2, . . . , 2𝑎 + 1} \ {2𝑖},

and 𝑥𝑖 = − otherwise. The goal now is to show 𝛼 cannot be implementable by clock auctions, and

in particular, there exists a clause 𝑐𝑖 , with 𝑆 being the set of agents corresponding to the literals

appearing in 𝑐𝑖 , such that 𝑆 is a free-riding group at 𝑣
𝑐𝑖
, which, given that𝛼 (𝑣𝑐𝑖 ) = {1}, means𝛼 is not

implementable by clock auctions. We establish this claim based on the fact that the corresponding

3-SAT instance is unsatisfiable. In fact, since we have a legitimate assignment of the variables, there

must be a clause 𝑐𝑖 = 𝑥
𝑠1

𝑖1
∨𝑥𝑠2

𝑖2
∨𝑥𝑠3

𝑖3
(without loss of generality we assume there are 3 literals involved;

the case with only 2 literals is similar) such that 𝑥𝑖1 ≠ 𝑠1, 𝑥𝑖2 ≠ 𝑠2, and 𝑥𝑖3 ≠ 𝑠3 in the assignment

constructed from 𝛼 . Consider 𝑆 = {2𝑖1 + I[𝑠1 = −], 2𝑖2 + I[𝑠2 = −], 2𝑖3 + I[𝑠3 = −]}. We only need to

show 𝑆 is a free-riding group at 𝑣𝑐𝑖 . This is true because for (𝑖1, 𝑠𝑖 ), (1) 𝑣𝑥
𝑠
1

𝑖
1 ≥𝑆\{2𝑖1+I[𝑠1=−]} 𝑣

𝑐𝑖
and

(2) 2𝑖1 + I[𝑠1 = −] ∈ 𝛼 (𝑣𝑥
𝑠
1

𝑖
1 ) by the two conditions about 𝛼 and the construction of the assignment.

In other words, 2𝑖1 + I[𝑠1 = −] free-rides 𝑆 \ {2𝑖1 + I[𝑠1 = −]} at 𝑣𝑐𝑖 . The same is true for (𝑖2, 𝑠2)
and (𝑖3, 𝑠3) for similar reasons, and we know 𝑆 is a free-riding group at 𝑣𝑐𝑖 , which contradicts

implementability given 𝛼 (𝑣𝑐𝑖 ) = {1}. This means the only possible way 𝛼 can guarantee𝑊 turns

out to be impossible, and there is no way to achieve𝑊 using clock auctions. This finishes the proof

of Theorem 3. □

Proof of Lemma 3. The proof consists of two parts. We first prove that the first claim implies

the second.

Direction =⇒ : Suppose the first claim holds for some 𝐶1 > 0, and we want to find 𝐶2 > 0

such that the second claim holds. Pick any instance (𝑚,D, 𝑡). If Pr𝑣∼D [∥𝑣 ∥1 ≥ 𝑡] ≥ 1/100, then

the clock auction protocol that always allocates to everyone without increasing any agent’s clock

price (1/100, 1)-extracts the upper tail defined by 𝑡 . Otherwise, we construct a problem instance

for welfare maximization by copy-pasting the upper tail extraction instance.

Let 𝑞 = Pr𝑣∼D [∥𝑣 ∥1 ≥ 𝑡], and 𝑘 = ⌊1/𝑞⌋. Let 𝑛 =𝑚𝑘 , F be such thatM(F ) = {{1 + 𝑖𝑚, . . . ,𝑚 +
𝑖𝑚} | 𝑖 ∈ {0, . . . , 𝑘 − 1}}, and D′ = D𝑘

. In particular, for each 𝑆 ∈ M(F ), 𝑣𝑆 ∼ D when 𝑣 ∼ D′.
Let V be the support of D′. We first argue that the following two quantities: (1) the (expected)

first-best welfare in the welfare maximization problem, i.e., E𝑣′∼D′
[
max𝑆∈M(F) ∥𝑣 ′𝑆 ∥1

]
, and (2)

the conditional expectation of the total value in the tail defined by 𝑡 in the upper tail extraction

problem, i.e., E𝑣∼D [∥𝑣 ∥1 | ∥𝑣 ∥1 ≥ 𝑡], are within a constant factor of each other. This fact will be

useful momentarily in both directions of the proof. To see why the two quantities closely bound

each other, observe that for any event E where Pr𝑣′∼D′ [E] ≥ Pr𝑣𝑆∼D [∥𝑣 ∥1 ≥ 𝑡], we must have

E𝑣′∼D′ [∥𝑣 ′𝑆 ∥1 | E] ≤ E𝑣∼D [∥𝑣 ∥1 | ∥𝑣 ∥1 ≥ 𝑡],
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for all 𝑆 ∈ M(F ). Let E𝑆 be the event that ∥𝑣 ′
𝑆
∥1 > ∥𝑣 ′

𝑆 ′ ∥1 for all 𝑆 ′ ∈ M(F ) \ {𝑆}. Then
Pr𝑣′∼D′ [E𝑆 ] = 1/𝑘 ≥ Pr𝑣∼D [∥𝑣 ∥1 ≥ 𝑡] for all 𝑆 ∈ M(F ).9 As a result,

E𝑣′∼D′

[
max

𝑆∈M(F)
∥𝑣 ′𝑆 ∥1

]
=

∑︁
𝑆∈M(F)

Pr

𝑣′∼D′
[E𝑆 ] · E𝑣′∼D′ [∥𝑣 ′𝑆 ∥1 | E𝑆 ]

≤
∑︁

𝑆∈M(F)
Pr

𝑣′∼D′
[E𝑆 ] · E𝑣∼D [∥𝑣 ∥1 | ∥𝑣 ∥1 ≥ 𝑡]

= E𝑣∼D [∥𝑣 ∥1 | ∥𝑣 ∥1 ≥ 𝑡] .

On the other hand, one can lower bound the first-best welfare using the tail conditional expec-

tation via the following prophet-style argument (see, e.g., [Alaei, 2014, Chawla et al., 2010] for

earlier applications of similar arguments). For 𝑣 ′ ∼ D′, we iterate through all 𝑆 ∈ M(F ) one by
one, and “accept” an 𝑆 with probability 1/2 if ∥𝑣 ′

𝑆
∥1 ≥ 𝑡 ; the procedure terminates once we accept a

set. Without loss of generality, number these sets 𝑆1, . . . , 𝑆𝑘 . Then, the expected total value in the

set we accept (which lower bounds the first-best welfare) is

E𝑣′∼D′

[
max

𝑆∈M(F)
∥𝑣 ′𝑆 ∥1

]
≥

∑︁
𝑖∈[𝑘 ]

Pr[we did not accept 𝑆1, . . . , 𝑆𝑖−1] ·
1

2

Pr

𝑣′∼D′
[∥𝑣 ′𝑆𝑖 ∥1 ≥ 𝑡] · E𝑣′∼D′ [∥𝑣 ′𝑆𝑖 ∥1 |∥𝑣

′
𝑆𝑖
∥1 ≥ 𝑡] .

Taking the union bound, we get Pr[we did not accept 𝑆1, . . . , 𝑆𝑖−1] ≤ 1/2, and therefore

E𝑣′∼D′

[
max

𝑆∈M(F)
∥𝑣 ′𝑆 ∥1

]
≥

∑︁
𝑖∈[𝑘 ]

1

2

· 1

2

Pr

𝑣′∼D′
[∥𝑣 ′𝑆𝑖 ∥1 ≥ 𝑡] · E𝑣′∼D′ [∥𝑣 ′𝑆𝑖 ∥1 |∥𝑣

′
𝑆𝑖
∥1 ≥ 𝑡]

=
1

4

· 𝑘 · Pr

𝑣∼D
[∥𝑣 ∥1 ≥ 𝑡] · E𝑣∼D [∥𝑣 ∥1 | ∥𝑣 ∥1 ≥ 𝑡] .

Then, since 𝑘 = ⌊1/𝑞⌋ ≥ 100, we have 𝑘 · Pr𝑣∼D [∥𝑣 ∥1 ≥ 𝑡] = 𝑘 · 𝑞 ≥ 100/101, and

E𝑣′∼D′

[
max

𝑆∈M(F)
∥𝑣 ′𝑆 ∥1

]
≥ 1

5

· E𝑣∼D [∥𝑣 ∥1 | ∥𝑣 ∥1 ≥ 𝑡] .

To summarize, we have

1

5

· E𝑣∼D [∥𝑣 ∥1 | ∥𝑣 ∥1 ≥ 𝑡] ≤ E𝑣′∼D′

[
max

𝑆∈M(F)
∥𝑣 ′𝑆 ∥1

]
≤ E𝑣∼D [∥𝑣 ∥1 | ∥𝑣 ∥1 ≥ 𝑡] .

It is possible to get tighter bounds (see, e.g., Lemma 2 in [Goel et al., 2023]), but for our purposes

any constant would suffice.

Now pick a clock auction protocol 𝛼 ′ that𝐶1-approximates the first-best welfare on (𝑛,V,D′, F ).
We will construct a clock auction protocol for the upper tail extraction instance with the desired

guarantees based on 𝛼 ′. Clearly for each 𝑣 ∈ V , 𝛼 ′ (𝑣) ⊆ 𝑆 for some 𝑆 ∈ M(F ). So we have

𝐶1 · E𝑣′∼D′

[
max

𝑆∈M(F)
∥𝑣 ′𝑆 ∥1

]
≤ E𝑣′∼D′ [∥𝑣 ′𝛼 ′ (𝑣′ ) ∥]

=
∑︁

𝑆∈M(F)
Pr

𝑣′∼D′
[𝛼 ′ (𝑣 ′) ⊆ 𝑆] · E𝑣′∼D′ [∥𝑣 ′𝛼 ′ (𝑣′ ) ∥1 | 𝛼

′ (𝑣 ′) ⊆ 𝑆] .

9
Without loss of generality we are assuming D′ is non-atomic. The general case can be easily handled with a bit more care.
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LetM′ be the collection of maximal feasible sets 𝑆 satisfying:

E𝑣′∼D′ [∥𝑣 ′𝛼 ′ (𝑣′ ) ∥1 | 𝛼
′ (𝑣 ′) ⊆ 𝑆] ≥ 𝐶1

2

· E𝑣′∼D′

[
max

𝑆∈M(F)
∥𝑣 ′𝑆 ∥1

]
.

Then ∑︁
𝑆∈M′

Pr

𝑣′∼D′
[𝛼 ′ (𝑣 ′) ⊆ 𝑆] · E𝑣′∼D′ [∥𝑣 ′𝛼 ′ (𝑣′ ) ∥1 | 𝛼

′ (𝑣 ′) ⊆ 𝑆] ≥ 𝐶1

2

· E𝑣′∼D′

[
max

𝑆∈M(F)
∥𝑣 ′𝑆 ∥1

]
.

Furthermore, among all sets inM′, there must be one 𝑆∗ (pick an arbitrary one if there are many)

such that

Pr

𝑣′∼D′
[𝛼 ′ (𝑣 ′) ⊆ 𝑆∗] · E𝑣′∼D′ [∥𝑣 ′𝛼 ′ (𝑣′ ) ∥1 | 𝛼

′ (𝑣 ′) ⊆ 𝑆∗] ≥ 𝐶1

2|M′ | · E𝑣′∼D′

[
max

𝑆∈M(F)
∥𝑣 ′𝑆 ∥1

]
≥ 𝐶1

2𝑘
· E𝑣′∼D′

[
max

𝑆∈M(F)
∥𝑣 ′𝑆 ∥1

]
.

With this 𝑆∗ identified, here is how we construct the upper tail extraction protocol:

• Given 𝑣 ∼ D, draw 𝑘 − 1 more iid samples 𝑣 (1) , . . . , 𝑣 (𝑘−1)
from D. Combine these 𝑘 type

vectors (each of length𝑚) into 𝑣 ′ of length 𝑛 =𝑚𝑘 ; make sure (1) 𝑣 ′
𝑆∗ = 𝑣 , and (2) for all other

𝑆 ∈ M(F ), 𝑣 ′
𝑆
corresponds bijectively to one of the 𝑘 − 1 additional samples drawn from D.

• Run the welfare maximization protocol 𝛼 ′ on 𝑣 ′ and get 𝛼 ′ (𝑣 ′). Return 𝛼 (𝑣) = 𝛼 ′ (𝑣 ′) ∩ 𝑆∗ as
the output of the upper tail extraction protocol.

To see why this construction has the desired properties, first observe that it is in fact a (randomized)

clock auction protocol for the upper tail extraction problem (we will discuss derandomization

momentarily). Moreover, we have Pr𝑣∼D [𝛼 (𝑣) ≠ ∅] = Pr𝑣′∼D′ [𝛼 ′ (𝑣 ′) ⊆ 𝑆∗], and
E𝑣∼D [∥𝑣𝛼 (𝑣) ∥1 | 𝛼 (𝑣) ≠ ∅] = E𝑣′∼D′ [∥𝑣 ′𝛼 ′ (𝑣′ ) ∥1 | 𝛼

′ (𝑣 ′) ⊆ 𝑆∗] .
So by the choice of 𝑆∗, we have

E𝑣∼D [∥𝑣𝛼 (𝑣) ∥1 | 𝛼 (𝑣) ≠ ∅] ≥
𝐶1

2

· E𝑣′∼D′

[
max

𝑆∈M(F)
∥𝑣 ′𝑆 ∥1

]
≥ 𝐶1

10

· E𝑣∼D [∥𝑣 ∥1 | ∥𝑣 ∥1 ≥ 𝑡] .

and

Pr

𝑣∼D
[𝛼 (𝑣) ≠ ∅]·E𝑣∼D [∥𝑣𝛼 (𝑣) ∥1 | 𝛼 (𝑣) ≠ ∅] ≥

𝐶1

2𝑘
·E𝑣′∼D′

[
max

𝑆∈M(F)
∥𝑣 ′𝑆 ∥1

]
≥ 𝐶1

10𝑘
·E𝑣∼D [∥𝑣 ∥1 | ∥𝑣 ∥1 ≥ 𝑡] .

Let 𝜆 and 𝜇 be the largest real numbers such that the protocol 𝛼 constructed above (𝜆, 𝜇)-extracts
the upper tail defined by 𝑡 . Then we have

𝜆 =
E𝑣∼D [∥𝑣𝛼 (𝑣) ∥1 | 𝛼 (𝑣) ≠ ∅]
E𝑣∼D [∥𝑣 ∥1 | ∥𝑣 ∥1 ≥ 𝑡] , 𝜇 = min

{
1,

Pr𝑣∼D [𝛼 (𝑣) ≠ ∅]
Pr𝑣∼D [∥𝑣 ∥1 ≥ 𝑡]

}
.

Plugging in the bounds above, we get

𝜆 ≥ 𝐶1

10

, 𝜆 · 𝜇 ≥ min

{
𝜆,

𝐶1

10𝑘 · Pr𝑣∼D [∥𝑣 ∥1 ≥ 𝑡]

}
≥ min

{
𝐶1

10

,
𝐶1

11

}
=
𝐶1

11

.

To summarize, there is either (1) a trivial protocol that (1/100, 1)-extracts the upper tail, or (2)
a protocol based on 𝛼 ′ that (𝜆, 𝜇)-extracts the upper tail where 𝜆 · 𝜇 ≥ 𝐶1/11. We can therefore

conclude that 𝐶2 ≥ min{1/100,𝐶1/11}.
One minor issue left is that we might want to derandomize the upper tail extraction protocol

𝛼 constructed above. We quickly sketch how this can be done. First observe that losing another

factor of 2 in 𝜆 · 𝜇, one can ensure that the protocol for upper tail extraction terminates iff the

conditional expected total value among active agents is at least
𝜆
2
· E𝑣∼D [∥𝑣 ∥1 | ∥𝑣 ∥1 ≥ 𝑡]. Then,
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essentially the protocol only needs to maximize the expected “reward” it collects, where the

reward is the conditional expected total value among active agents if this quantity is at least

𝜆
2
·E𝑣∼D [∥𝑣 ∥1 | ∥𝑣 ∥1 ≥ 𝑡], and 0 otherwise. In particular, we know there is a protocol that produces

a reward high enough, and at the same time, any protocol that produces a reward high enough must

also be a good protocol for the upper tail extraction problem. This is a single objective optimization

problem without troubling constraints, and to derandomize a randomized protocol, one can simply

fix the random bits in a way that maximizes this objective. In other words, if the first claim holds

for potentially randomized clock auction protocols, then the second claim holds for deterministic

clock auction protocols. Now we proceed to the other direction of the proof, i.e., the second claim

implies the first.

Direction ⇐= : Fix any welfare maximization instace (𝑛,V,D, F ), whereM(F ) = {𝑆1, . . . , 𝑆𝑘 }.
For each 𝑖 ∈ [𝑘], let D𝑖 be the marginal distribution of 𝑣𝑆𝑖 when 𝑣 ∼ D,

𝑞𝑖 = Pr

𝑣∼D
[∥𝑣𝑆𝑖 ∥1 > ∥𝑣𝑆 𝑗

∥1, for all 𝑗 ∈ [𝑘] \ {𝑖}],

and 𝑡𝑖 be such that Pr𝑣∼D [∥𝑣𝑆𝑖 ∥1 ≥ 𝑡𝑖 ] = 𝑞𝑖 . Then, by essentially the same argument as in the first

part of the proof, we have

1

5

∑︁
𝑖∈[𝑘 ]

𝑞𝑖 · E𝑣∼D𝑖
[∥𝑣 ∥1 | ∥𝑣 ∥1 ≥ 𝑡𝑖 ] ≤ E𝑣∼D

[
max

𝑖∈[𝑘 ]
∥𝑣𝑆𝑖 ∥1

]
≤

∑︁
𝑖∈[𝑘 ]

𝑞𝑖 · E𝑣∼D𝑖
[∥𝑣 ∥1 | ∥𝑣 ∥1 ≥ 𝑡𝑖 ] .

Suppose the second claim holds with constant 𝐶2 > 0. For each 𝑖 ∈ [𝑘], let 𝛼𝑖 be a clock auction

protocol for the upper tail extraction instance ( |𝑆𝑖 |,D𝑖 , 𝑡𝑖 ) which (𝜆𝑖 , 𝜇𝑖 )-extracts the upper tail
defined by 𝑡𝑖 where 𝜆𝑖 · 𝜇𝑖 ≥ 𝐶2. Without loss of generality, suppose Pr𝑣∼D𝑖

[𝛼𝑖 (𝑣) ≠ ∅] ≤ 𝑞𝑖
(otherwise, conditioned on 𝛼𝑖 (𝑣) ≠ ∅, one can randomly set 𝛼𝑖 (𝑣) to ∅ with a properly chosen

probability without affecting 𝜆𝑖 · 𝜇𝑖 ). We construct a clock auction protocol 𝛼 for the welfare

maximization instance which constant-approximates the first-best welfare based on {𝛼𝑖 }.
The construction is again through a prohpet-style procedure: For 𝑣 ∼ D, we process 𝑆1, . . . , 𝑆𝑘

sequentially. For each 𝑆𝑖 , we run 𝛼𝑖 on 𝑣𝑆𝑖 . If 𝛼𝑖 (𝑣𝑆𝑖 ) ≠ ∅, then with probability 1/2, we “accept” 𝑆𝑖
(in fact, we accept 𝛼𝑖 (𝑣𝑆𝑖 ) which is what is left in 𝑆𝑖 ), by raising the price for all other agents to

infinity and terminating the auction. When this happens, 𝛼 (𝑣) = 𝛼𝑖 (𝑣𝑆𝑖 ). Otherwise, we move on

to 𝑆𝑖+1. We allocate to no one (i.e., 𝛼 (𝑣) = ∅) if none of the 𝑆𝑖 is accepted in this procedure. The

welfare guarantee of this protocol is the following:

E𝑣∼D [∥𝑣𝛼 (𝑣) ∥1] ≥
∑︁
𝑖∈[𝑘 ]

Pr

𝑣∼D
[𝑆𝑖 is accepted] · E𝑣∼D [∥𝑣𝛼𝑖 (𝑆𝑖 ) ∥1 | 𝑆𝑖 is accepted]

≥
∑︁
𝑖∈[𝑘 ]

(∑︁
𝑗<𝑖

1

2

Pr

𝑣∼D𝑗

[𝛼 𝑗 (𝑣) ≠ ∅]
)
· 1

2

Pr

𝑣∼D𝑖

[𝛼𝑖 (𝑣) ≠ ∅] · E𝑣∼D𝑖
[∥𝑣𝛼𝑖 (𝑣) ∥1 | 𝛼𝑖 (𝑣) ≠ ∅]

(union bound)

≥
∑︁
𝑖∈[𝑘 ]

1

4

Pr

𝑣∼D𝑖

[𝛼𝑖 (𝑣) ≠ ∅] · E𝑣∼D𝑖
[∥𝑣𝛼𝑖 (𝑣) ∥1 | 𝛼𝑖 (𝑣) ≠ ∅]

(Pr𝑣∼D𝑗
[𝛼 𝑗 (𝑣) ≠ ∅] ≤ 𝑞 𝑗 )

≥
∑︁
𝑖∈[𝑘 ]

1

4

·𝐶2 · Pr

𝑣∼D𝑖

[∥𝑣 ∥1 ≥ 𝑡𝑖 ] · E𝑣∼D𝑖
[∥𝑣 ∥1 | ∥𝑣 ∥1 ≥ 𝑡𝑖 ] (choice of 𝛼𝑖 )

≥ 𝐶2

4

· E𝑣∼D

[
max

𝑖∈[𝑘 ]
∥𝑣𝑆𝑖 ∥1

]
.

(upper bound on first-best welfare via upper tail extraction)
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In other words, if the second claim holds with constant 𝐶2 > 0, then the first claim holds with

constant 𝐶2/4 > 0. Again, one can derandomize the protocol 𝛼 constructed above by choosing the

optimal random bits, since we are dealing with a single-objective optimization problem without

troubling constraints. This finishes the entire proof. □
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